Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (6): 1557-1570.doi: 10.16285/j.rsm.2021.1608

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Evolution of deformation field and energy of organic-rich oil shale under uniaxial compression

WANG Lu-nan1, 2, TAO Chuan-qi1, 2, YIN Xiao-meng3, HAN Jie1, 2, YANG Lei1, ZHANG Gan-ping1   

  1. 1. School of Civil Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, China; 2. Liaoning Key Laboratory of Petro-chemical Special Building Materials, Liaoning Petrochemical University, Fushun, Liaoning 113001, China; 3. College of Intelligent Construction, Wuchang University of Technology, Wuhan, Hubei 430223, China
  • Received:2021-09-21 Revised:2022-03-04 Online:2022-06-21 Published:2022-06-30
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(41807240), the Research Fund for the Doctoral Program of Liaoning Province (2019-BS-160) and the Science and Technology Research of Education Department of Liaoning Province(LJKZ0404).

Abstract: The uneven distribution of organic matter in oil shale strata results in different mechanical response and failure mechanism. Uniaxial compression test, digital image correlation and infrared thermal imaging were used to study the deformation field, temperature field and energy evolution characteristics of oil shale during the whole loading process under different organic matter abundances, and to reveal the influence of organic matter abundance on mechanical properties and deformation and failure mechanism of oil shale. The results show that the stress-strain characteristics of oil shale present gradual attenuation as the organic matter abundance increases, while the ductility has improved significantly. The failure mode changes from splitting tensile failure to tension-shear compound failure, which is attributed to the fact that organic matter abundance affects the control degree of bedding planes on the macroscopic crack evolution. Moreover, the deformation field and temperature field exhibit obvious localized features during loading. With the increase of organic matter abundance, the surface deformation and infrared temperature increase, and the degree of differentiation of the two fields also intensifies. In addition, organic matter abundance also affects the energy transformation and distribution of oil shale. With the increase of organic matter abundance, the energy absorption, storage and release properties weaken, while the dissipation property enhances, causing a lower overall energy state. This is the essential reason for the differences in mechanical properties and deformation and failure laws of oil shale with different organic matter abundances.

Key words: oil shale, organic matter abundance, deformation field, temperature field, energy characteristics

CLC Number: 

  • TU 45
[1] WANG Yang, CHEN Wen-hua. Nonlinear temperature field of granite fracture tip induced by high natural environmental temperature based on fracture shape function [J]. Rock and Soil Mechanics, 2022, 43(S1): 267-274.
[2] ZHANG Ke, LI Na, CHEN Yu-long, LIU Wen-lian, . Evolution characteristics of strain field and infrared radiation temperature field during deformation and rupture process of fractured sandstone [J]. Rock and Soil Mechanics, 2020, 41(S1): 95-105.
[3] ZHOU Xiang-yun, SUN De-an, LUO Ting, . Semi-analytical solution of near-field temperature in nuclear waste disposal repository [J]. Rock and Soil Mechanics, 2020, 41(S1): 246-254.
[4] LIU Wei-jun, ZHANG Jin-xun, SHAN Ren-liang, YANG Hao, LIANG Chen, . Experiments on temperature field of multi-row-pipe partial horizontal freezing body in Beijing sand-gravel stratum under seepage [J]. Rock and Soil Mechanics, 2019, 40(9): 3425-3434.
[5] SONG Yi-min, DENG Lin-lin, LÜ Xiang-feng, XU Hai-liang, ZHAO Ze-xin, . Study of acoustic emission characteristics and deformation evolution during rock frictional sliding [J]. Rock and Soil Mechanics, 2019, 40(8): 2899-2906.
[6] SONG Hong-qiang, ZUO Jian-ping, CHEN Yan, LI Li-yun, HONG Zi-jie, . Revised energy drop coefficient based on energy characteristics in whole process of rock failure [J]. Rock and Soil Mechanics, 2019, 40(1): 91-98.
[7] ZHANG Pei-ran, HUANG Xue-feng, YANG Xiao-hui, LIU Zi-long, ZHU Zhong-hua,. Experiment on coupling effect of water and thermal field and salt-expansion deformation of salty soil [J]. , 2018, 39(5): 1619-1624.
[8] ZHANG Yu-wei, XIE Yong-li, LI You-yun, LAI Jin-xing,. A frost heave model based on space-time distribution of temperature field in cold region tunnels [J]. , 2018, 39(5): 1625-1632.
[9] REN Jian-xi, SUN Jie-long, ZHANG Kun, WANG Jiang, WANG Dong-xing. Mechanical properties and temperature field of inclined frozen wall in water-rich sand stratum [J]. , 2017, 38(5): 1405-1412.
[10] SHI Rong-jian, YUE Feng-tian, ZHANG Yong, LU Lu, . Model test on freezing reinforcement for shield junction Part 1: Distribution characteristics of temperature field in soil stratum during freezing process [J]. , 2017, 38(2): 368-376.
[11] SHU Cai, WANG Hong-tu, SHI Feng, HU Guo-zhong ,. A fully coupled thermal-hydrological-mechanical model for gas seepage based on binary-energy-state heat theory [J]. , 2017, 38(11): 3197-3204.
[12] SHEN Yan-jun,YANG Geng-she,RONG Teng-long,LIU Hui. Analysis of evolution of temperature field and frost heaving in hard rock with surface cracks under low temperature environment [J]. , 2016, 37(S1): 521-529.
[13] TIAN Bao-zhu , LIU Shan-jun , ZHANG Yan-bo , LIANG Peng , LIU Xiang-xin , . Laboratory simulation of temporospatial evolution characteristics of infrared radiation in the process of rockburst in granite tunnel [J]. , 2016, 37(3): 711-718.
[14] LIANG Chang-yu, LI Xiao, WU Shu-ren,. Research on energy characteristics of size effect of granite under low / intermediate strain rates [J]. , 2016, 37(12): 3472-3480.
[15] HUANG Xu ,KONG Gang-qiang ,LIU Han-long ,CHARLES W W Ng,. Experimental research on thermomechanical characteristics of PCC energy pile under cyclic temperature field [J]. , 2015, 36(3): 667-673.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .