Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (6): 1546-1556.doi: 10.16285/j.rsm.2021.1337

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Influence of rainfall patterns on anti-seepage performance of capillary barrier covers

LI Ning1, 2, PAN Hang1, ZHANG Mao-jian1, ZHANG Hui-li1, LI Xin-zhen1, XU Jian-cong2   

  1. 1. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
  • Received:2021-08-14 Revised:2022-03-02 Online:2022-06-21 Published:2022-06-30
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(40872179, U1765110) and the Natural Science Foundation of Shanghai (16ZR1423300).

Abstract: The anti-seepage performance of capillary barrier covers (CBCs) has been widely studied because of its importance in controlling leachate and mitigating pollution in the surrounding environment of landfills. However, the effect of rainfall pattern on the anti-seepage performance of CBCs has often been neglected in previous work because the constant rainfall intensity is usually used to simulate rainfall. Therefore, this study investigates the effect of rainfall patterns on the anti-seepage performance of CBCs and reveals its most unfavorable rainfall pattern under two types of rainfall conditions, namely short and heavy rainfall (SHR) and prolonged light rainfall (PLR), by using the self-developed soil column rainfall infiltration test system. In addition, the SEEP/W software was used to numerically simulate each test condition so that the simulation results and the test results could corroborate each other. The results show that the test results are basically consistent with the simulation results, and the maximum error is no more than 3%. The rainfall pattern only has a significant effect on the volumetric water content and pore water pressure in the upper part of the CBCs for SHR, while for PLR, the rainfall pattern has a significant effect on the volumetric water content and pore water pressure of the whole soil column. The rainfall pattern has an effect on both the breakthrough time and the leakage amount of the CBCs. The breakthrough time of the advanced rainfall is the shortest and the leakage amount is the largest, while the breakthrough time of the delayed rainfall is the longest and the leakage amount is the smallest. Advanced rainfall is the most unfavorable rainfall pattern, which is more likely to cause the CBCs breakthrough failure and produce large leakage. The research results can provide a reference for the design of CBCs.

Key words: capillary barrier covers(CBCs), rainfall infiltration, rainfall patterns, anti-seepage performance, numerical simulation

CLC Number: 

  • TU411
[1] LIAO Wen-wang, JI Jian, ZHANG Tong, WU Zhi-jun, ZHANG Jie, . Time-dependent hazard assessment of rainfall-induced shallow landslides considering the spatial variability of soil permeability [J]. Rock and Soil Mechanics, 2022, 43(S1): 623-632.
[2] FAN Hao-bo, ZHOU Ding-kun, LIU Yong, SONG Yu-xiang, ZHU Zheng-guo, ZHU Yong-quan, GAO Xin-qiang, GUO Jia-qi, . Mechanical response characteristics of lining structure of pipeline karst tunnels in water-rich areas [J]. Rock and Soil Mechanics, 2022, 43(7): 1884-1898.
[3] ZHANG Ge, CAO Ling, WANG Cheng-tang, . Development and application of elastic-plastic damage constitutive model considering softening characteristics of polycrystalline ice [J]. Rock and Soil Mechanics, 2022, 43(7): 1969-1977.
[4] ZHANG Chan-qing, HE Feng-fei, JIANG Shun-hang, ZENG Zi-zhen, XIONG Feng, CHEN Jiang, . Vibration characteristics of super large centrifuge foundation [J]. Rock and Soil Mechanics, 2022, 43(7): 2025-2034.
[5] LENG Wu-ming, DENG Zhi-long, XU Fang, ZHANG Qi-shu, DONG Jun-li, LIU Si-hui. A prestress loss model for subgrade considering creep effect of subgrade soil [J]. Rock and Soil Mechanics, 2022, 43(6): 1671-1682.
[6] CHI Xiao-lou, YANG Ke, LIU Wen-jie, FU Qiang, WEI Zhen, . Study of caving pattern of regenerated roof in fully-mechanized slicing mining of steeply dipping coal seam [J]. Rock and Soil Mechanics, 2022, 43(5): 1391-1400.
[7] QIAO Ya-fei, TANG Jie, GU Yun, DING Wen-qi, . Evolution mode of lateral pressure on the trench wall and disturbance analysis during construction of super-deep diaphragm wall [J]. Rock and Soil Mechanics, 2022, 43(4): 1083-1092.
[8] HE Yong, HU Guang, ZHANG Zhao, LOU Wei, ZOU Yan-hong, LI Xing, ZHANG Ke-neng. Numerical simulation on the migration and transformation mechanism of hexavalent chromium in contaminated site [J]. Rock and Soil Mechanics, 2022, 43(2): 528-538.
[9] WEI Tian-yu, WANG Xu-hong, LÜ Tao, HU Da-wei, ZHOU Hui, HONG Wen, . Analysis of the influence of wetting expansion and sand mixing rate on the THM coupling process of hybrid buffer material [J]. Rock and Soil Mechanics, 2022, 43(2): 549-562.
[10] HOU Xiao-ping, FAN Heng-hui. Study on rainfall infiltration characteristics of unsaturated fractured soil based on COMSOL Multiphysics [J]. Rock and Soil Mechanics, 2022, 43(2): 563-572.
[11] MA Cheng-hao, ZHU Chang-qi, LIU Hai-feng, CUI Xiang, WANG Tian-min, JIANG Kai-fang, YI Ming-xing, . State-of-the-art review of research on the particle shape of soil [J]. Rock and Soil Mechanics, 2021, 42(8): 2041-2058.
[12] CUI Wei, WANG Li-xin, JIANG Zhi-an, WANG Chao, WANG Xiao-hua, ZHANG She-rong, . Numerical simulation of grouting process in rock mass with rough fracture network based on corrected cubic law [J]. Rock and Soil Mechanics, 2021, 42(8): 2250-2258.
[13] ZHU Chun, HE Man-chao, ZHANG Xiao-hu, TAO Zhi-gang, YIN Qian, LI Li-feng, . Nonlinear mechanical model of constant resistance and large deformation bolt and influence parameters analysis of constant resistance behavior [J]. Rock and Soil Mechanics, 2021, 42(7): 1911-1924.
[14] WANG Zhao-yao, LIU Hong-jun, YANG Qi, ZHAO Zhen, HU Rui-geng, . Local scour of large diameter monopile under combined waves and currents [J]. Rock and Soil Mechanics, 2021, 42(4): 1178-1185.
[15] CHEN Meng, CUI Xiu-wen, YAN Xin, WANG Hao, WANG Er-lei, . Prediction model for compressive strength of rock-steel fiber reinforced concrete composite layer [J]. Rock and Soil Mechanics, 2021, 42(3): 638-646.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .