Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (7): 1969-1977.doi: 10.16285/j.rsm.2021.1686

• Numerical Analysis • Previous Articles     Next Articles

Development and application of elastic-plastic damage constitutive model considering softening characteristics of polycrystalline ice

ZHANG Ge1, 2, CAO Ling1, 2, WANG Cheng-tang3   

  1. 1. Key Laboratory of Geological Hazards on Three Gorges Reservoir Area, Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China; 2. College of Civil Engineering & Architecture, China Three Gorges University, Yichang, Hubei 443002, China; 3. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2021-10-08 Revised:2022-03-30 Online:2022-07-26 Published:2022-08-05
  • Supported by:
    This work was supported by the Key R&D Program of China (2017YFC1501304).

Abstract: With the gradual warming of the global climate, the possibility of large-scale sliding and collapse disasters of glaciers, large ice sheets or thicker ice layers are increasing. Research on the deformation characteristics of polycrystalline ice and establishing its constitutive model are of great significance for the disaster forecasting of polar regions. Based on the existing triaxial compression test data of artificial polycrystalline ice, it is found that the artificial polycrystalline ice has prominent characteristics of strain softening. The damage variable with equivalent plastic strain as the variable is proposed. By using the Mohr-Coulomb criterion as the initial yield function, and adopting the associated flow rule, an elastoplastic damage constitutive model that can reflect the strain softening characteristics of polycrystalline ice is established. The proposed constitutive model is verified by triaxial compression test data under different confining pressures and different temperatures, and parameter sensitivity analysis of some model parameters is carried out. The established elastoplastic damage constitutive model was written in the FLAC3D software, and the embedded constitutive model was verified by the triaxial compression of a single unit. Then, the embedded elastoplastic damage constitutive model is used to perform triaxial compression on the cylindrical specimen. The simulation results are analyzed in detail. The results provide a theoretical and numerical basis for the stability analysis of glaciers and the multi field coupling study of glaciers.

Key words: polycrystalline ice, glacier stability, constitutive model, secondary development, numerical simulation

CLC Number: 

  • P 343
[1] HE Guan, YAO Yang-ping. Theoretical relation between unified hardening model and sub-loading surface model [J]. Rock and Soil Mechanics, 2022, 43(S2): 11-22.
[2] JIANG Fan, LIU Hua, YUE Qing, YANG Wen-shuang. Variation trend of soil pressure under cutting edges of the super large caisson during sinking stage [J]. Rock and Soil Mechanics, 2022, 43(S2): 431-442.
[3] ZHOU Hao, CHEN Guo-liang, HE Xiang, WU Jia-ming, ZHANG Rong-tang, YIN Da-wei, YUAN Kun-bin, WU Zhe, . Key technologies of building information model integration and simulation in geotechnical engineering [J]. Rock and Soil Mechanics, 2022, 43(S2): 443-453.
[4] DENG Peng-hai, LIU Quan-sheng, HUANG Xing, PAN Yu-cong, BO Yin, . Combined finite-discrete element numerical study on the buckling failure mechanism of horizontally layered soft rock mass [J]. Rock and Soil Mechanics, 2022, 43(S2): 508-523.
[5] LUO Guan-yong, ZHONG Miao, CAO Hong, PAN Hong, . Measured data and numerical simulation analysis of shield tunneling in sand [J]. Rock and Soil Mechanics, 2022, 43(S2): 563-574.
[6] YUAN Wei, ZHONG Hui-ya, ZHU Yi, TANG Jia, HONG Jian-fei, WANG Ya-xiong, LIN Hang, WAN Ning, WANG An-li, . Determination method of slope critical failure state based on monitoring data fusion [J]. Rock and Soil Mechanics, 2022, 43(S2): 575-587.
[7] DING Yang, XIONG Ye, CHEN Zi-zi, WU Xiao-han, WANG Xiao-bo, . Field test and numerical simulation for dynamic characteristics of cast-in-place pile [J]. Rock and Soil Mechanics, 2022, 43(S2): 640-646.
[8] LIU Yan-jing, WANG Lu-jun, ZHU Bin, CHEN Yun-min, . An elastoplastic constitutive model for hydrate-bearing sediments considering the effects of filling and bonding [J]. Rock and Soil Mechanics, 2022, 43(9): 2471-2482.
[9] RUAN Bin, JI Han-wen, WANG Su-yang, HE Hong-jun, MIAO Yu. Seismic incident wave separation method based on array observation and numerical verification [J]. Rock and Soil Mechanics, 2022, 43(9): 2615-2623.
[10] FAN Hao-bo, ZHOU Ding-kun, LIU Yong, SONG Yu-xiang, ZHU Zheng-guo, ZHU Yong-quan, GAO Xin-qiang, GUO Jia-qi, . Mechanical response characteristics of lining structure of pipeline karst tunnels in water-rich areas [J]. Rock and Soil Mechanics, 2022, 43(7): 1884-1898.
[11] YUAN Yu, LIU Run, FU Deng-feng, SUN Guo-dong. Secondary development and application of structural marine clay damage model [J]. Rock and Soil Mechanics, 2022, 43(7): 1989-2002.
[12] ZHANG Chan-qing, HE Feng-fei, JIANG Shun-hang, ZENG Zi-zhen, XIONG Feng, CHEN Jiang, . A mobile point heat source method for soil moisture monitoring [J]. Rock and Soil Mechanics, 2022, 43(7): 2025-2034.
[13] KANG Xiao-sen, LIAO Hong-jian, HUANG Qiang-bing, HUO Bing-yao, . Spacing ratio of structural loess and its prediction using bounding surface plasticity model [J]. Rock and Soil Mechanics, 2022, 43(6): 1469-1480.
[14] LI Ning, PAN Hang, ZHANG Mao-jian, ZHANG Hui-li, LI Xin-zhen, XU Jian-cong, . Influence of rainfall patterns on anti-seepage performance of capillary barrier covers [J]. Rock and Soil Mechanics, 2022, 43(6): 1546-1556.
[15] LENG Wu-ming, DENG Zhi-long, XU Fang, ZHANG Qi-shu, DONG Jun-li, LIU Si-hui. A prestress loss model for subgrade considering creep effect of subgrade soil [J]. Rock and Soil Mechanics, 2022, 43(6): 1671-1682.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .