Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (8): 2233-2240.doi: 10.16285/j.rsm.2021.1774

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Calculation model of undrained shear strength of gassy soft soil

ZHENG Wei-wei1, HONG Yi1, 2, WANG Li-zhong1, 2   

  1. 1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, Zhejiang 310058, China; 2. Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China
  • Received:2021-10-21 Revised:2022-01-16 Online:2022-08-11 Published:2022-08-19
  • Supported by:
    This work was supported by the National Key Research and Development Program Project (2018YFE0109500), the National Natural Science Foundation of China (52122906, 51779221, 51939010) and the Natural Science Foundation of Zhejiang Province (LHZ20E090001).

Abstract:

Gassy soft soil is widely distributed in five continents in the world. The existence of a large number of discrete bubbles can strengthen or damage the undrained shear strength of soft soil. However, there is still a lack of analytical expression for undrained shear strength of gassy soil, which can comprehensively consider the competition mechanism between gas-phase strengthening and gas-phase damage. Combined with the theory of critical state soil mechanics and based on the yield function of gassy soil proposed by the author, this paper established the mathematical relationship between the intercept of critical state line and the gassy characteristics (w 0,0)  of soil in the  v-lnp¢  space, and then deduced the theoretical expression of undrained shear strength su of gassy soft soil in triaxial stress state. At the same time, using the deduced theoretical calculation formula of undrained shear strength of gassy soft soil, this paper compared the theoretical predictions and test results of undrained shear strength for three kinds of typical gassy soft soil under different gassy characteristics, including Malaysian kaolin silt, Combwich mud and kaolin clay. In addition, this study analyzed the predicted error percentage of four different theoretical calculation models for undrained shear strength of gassy soft soil, proving the rationality of the theoretical calculation formula of undrained shear strength based on the improved constitutive model of gassy soft soil. The proposed model can more accurately consider the dual effects of gas phase strengthening and gas phase damage of gassy soft soil simultaneously.

Key words: gassy soft soil, undrained shear strength, yield function, gas phase effect

CLC Number: 

  • TU 473
[1] XIAO Han, DONG Chao-qiang, ZHANG Rong-jun, LU Zhan, ZHENG Jun-jie. Effect of quicklime on solidification efficiency of mud slurry treated by physicochemical composite method [J]. Rock and Soil Mechanics, 2022, 43(S2): 214-222.
[2] YANG Zhou, CHENG Xiao-hui, MA Qiang, LIU Wei, XIE Zhuang-zi, . Study of strength indices for undrained stability analysis of high filled ground [J]. Rock and Soil Mechanics, 2022, 43(1): 218-226.
[3] WANG Bin, HAN You-ming, ZHOU Xin, CHEN Cheng, ZHANG Xian-wei, GUI Lei, . In-situ test of shear modulus decay characteristics of lacustrine clay layer in Taihu Lake [J]. Rock and Soil Mechanics, 2021, 42(7): 2031-2040.
[4] ZHAN Liang-tong, SUN Qian-qian, GUO Xiao-gang, CHEN Rui, CHEN Yun-min, . Estimation of undrained shear strength of completely decomposed granite waste during rapid landfilling [J]. Rock and Soil Mechanics, 2021, 42(1): 50-58.
[5] YU Lu, YANG Qing, YANG Gang, ZHANG Jin-li. Analysis of the resistance of elliptical tip of torpedo anchor by plastic limit analysis [J]. Rock and Soil Mechanics, 2020, 41(6): 1953-1962.
[6] LIU Si-hong, SHEN Chao-min, MAO Hang-yu, SUN Yi. State-dependent elastoplastic constitutive model for rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(8): 2891-2898.
[7] QIU Min, YUAN Qing, LI Chang-jun, XIAO Chao-chao, . Comparative study of calculation methods for undrained shear strength of clay based on cavity expansion theory [J]. Rock and Soil Mechanics, 2019, 40(3): 1059-1066.
[8] ZHOU Jian, CAI Lu, LUO Ling-hui, YING Hong-wei, . Limit equilibrium analysis of anisotropic soft clay stability against excavation basal heave [J]. Rock and Soil Mechanics, 2019, 40(12): 4848-4856.
[9] FAN Ning, NIAN Ting-kai, ZHAO Wei, LU Shuang, SONG Lei, YIN Ping,. Rheological test and strength model of submarine mud flow [J]. , 2018, 39(9): 3195-3202.
[10] JIANG Shui-hua, ZENG Shao-hui, YANG Jian-hua, YAO Chi, HUANG Jin-song, ZHOU Chuang-bing,. Slope reliability analysis by simulation of non-stationary random field of undrained shear strength [J]. , 2018, 39(3): 1071-1081.
[11] WANG Jin, ZHU Ze-qi, CHEN Jian, FU Xiao-dong, FANG Qiang, . Study of in-situ mechanical properties of littoral deposit soft soil by self-boring pressuremeter [J]. , 2017, 38(S1): 195-202.
[12] LIU Mei-lin, FANG Qian, ZHANG Ding-li, HOU Yan-juan. Research on synthetic system stiffness of strutted retaining structure for deep excavation [J]. , 2017, 38(7): 2059-2064.
[13] GUO Xiao-qing ,ZHU Bin ,LIU Jin-chao ,XIONG Gen ,HUANG Gen-qing , . Experimental study of undrained shear strength and cyclic degradation behaviors of marine clay in Pearl River Estuary [J]. , 2016, 37(4): 1005-1012.
[14] CUI Hong-huan , LIU Jian-kun , ZHANG Li-qun , TIAN Ya-hu , . A constitutive model of subgrade in a seasonally frozen area with considering freeze-thaw cycles [J]. , 2015, 36(8): 2228-2236.
[15] WANG Shu-ying,YANG Jun-sheng,ZHANG Xue-min. Study of postliquefaction shear strength of low-plasticity silt with reconsolidation [J]. , 2014, 35(7): 1849-1854.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .