Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (8): 2241-2252.doi: 10.16285/j.rsm.2021.1839

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study on solidification of land reclamation sea sand by EICP combined with targeting activation of microbes producing urease

CAO Guang-hui1, LIU Shi-yu1, CAI Yan-yan1, YU Jin1, SUN Zhi-long2   

  1. 1. Fujian Research Center for Tunneling and Urban Underground Space Engineering, Huaqiao University, Xiamen, Fujian 361021, China; 2. China Railway Nanchang Group Co., Ltd., Nanchang, Jiangxi 330002, China
  • Received:2021-10-27 Revised:2022-04-20 Online:2022-08-11 Published:2022-08-19
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52178334, 51978292) and the Natural Science Foundation of Fujian Province (2019J01048)

Abstract:

 Biomineralization of soil solidification methods is currently diversified, and different mineralization methods have their own limitations. The enzyme-induced carbonate precipitation (EICP) lacks nucleation sites, while the targeted activation of urease-producing microorganisms induced mineralization (biostimulation) has a longer solidification cycle and lower strength. Aiming at these problems, a mineralization method of biostimulation combined with EICP to reinforce soil is developed. In this paper,  reclaimed sea sand from Xiamen Xiang'an International Airport was investigated. Unconfined compressive strength tests (UCS), calcium carbonate production measurements, scanning electron microscope (SEM), X-ray diffraction (XRD), and microbial diversity testing were used to evaluate and analyze the solidification effect of the combined method. Some findings were observed.          1) Biostimulation combined with EICP mineralization can get a higher UCS, up to 2 300 kPa, which was greater than the sum of the UCS of the two separate mineralizations. 2) Biostimulation combined with EICP can promote the formation of calcium carbonate precipitation while improving its distribution uniformity, and optimize the crystal structure of calcium carbonate. 3) Microbial community analysis shows that biostimulation can highly stimulate urease-producing bacteria. EICP has a slight stimulating effect on some species. The species richness and uniformity of biostimulation combined with EICP are between those of EICP and biostimulation.

Key words: targeted activation, enzyme-induced carbonate precipitation (EICP), land reclamation sea sand, solidification, microbial community

CLC Number: 

  • TU 431
[1] XIAO Han, DONG Chao-qiang, ZHANG Rong-jun, LU Zhan, ZHENG Jun-jie. Effect of quicklime on solidification efficiency of mud slurry treated by physicochemical composite method [J]. Rock and Soil Mechanics, 2022, 43(S2): 214-222.
[2] LI Min, YU He-miao, MA Guo-wei, CHAI Shou-xi, . Study on control of lime-fly ash solidification on migration of petroleum pollutants in saline soil [J]. Rock and Soil Mechanics, 2022, 43(S2): 337-344.
[3] LIANG Shi-hua, FENG De-luan. Experimental study on strength and water stability of concentrated solution sludge solidified with sulfoaluminate cement collaborating waste incineration by-products [J]. Rock and Soil Mechanics, 2022, 43(6): 1453-1468.
[4] ZHOU Yang, CHEN Yong-hui, KONG Gang-qiang, CHEN Long, CHEN Geng. Pile-soil stress ratio and settlement of in-situ shallow solidification-combined pipe-pile composite foundation under embankment load [J]. Rock and Soil Mechanics, 2022, 43(3): 688-696.
[5] LI Chi, TIAN Lei, DONG Cai-huan, ZHANG Yong-feng, WANG Yan-xing, . Experimental study on zinc-lead composite contaminated soil solidified/stabilized by MICP technology combined with porous silicon adsorption materials [J]. Rock and Soil Mechanics, 2022, 43(2): 307-316.
[6] YANG Ai-wu, XU Cai-li, LANG Rui-qing, WANG Tao, . Three-dimensional mechanical properties and failure criterion of municipal solidified sludge under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2021, 42(4): 963-975.
[7] WANG Dong-xing, CHEN Zheng-guang, . Strain rate effect on mechanical properties of magnesium oxychloride cement solidified sludge [J]. Rock and Soil Mechanics, 2021, 42(10): 2634-2646.
[8] WANG Dong-xing, CHEN Zheng-guang, . Mechanical properties and micro-mechanisms of magnesium oxychloride cement solidified sludge [J]. Rock and Soil Mechanics, 2021, 42(1): 77-85.
[9] LI Xian, WANG Shi-ji, HE Bing-hui, SHEN Tai-yu, . Permeability condition of soil suitable for MICP method [J]. Rock and Soil Mechanics, 2019, 40(8): 2956-2964.
[10] WANG Dong-xing, XIAO Jie, LI Li-hua, XIAO Heng-lin, . Micro-mechanism of durability evolution of sludge dredged from East Lake, Wuhan based on carbonation-solidification technique [J]. Rock and Soil Mechanics, 2019, 40(8): 3045-3053.
[11] ZHENG Yao-lin, ZHANG Rong-jun, ZHENG Jun-jie, DONG Chao-qiang, LU Zhan, . Experimental study of flocculation-solidification combined treatment of hydraulically dredged mud at extra high-water content [J]. Rock and Soil Mechanics, 2019, 40(8): 3107-3114.
[12] WANG Dong-xing, XIAO Jie, XIAO Heng-lin, MA Qiang, . Experimental study of carbonated-solidified sludge in East Lake, Wuhan [J]. Rock and Soil Mechanics, 2019, 40(5): 1805-1812.
[13] ZHA Fu-sheng, LIU Jing-jing, XU Long, DENG Yong-feng, YANG Cheng-bin, CHU Cheng-fu, . Electrical resistivity of heavy metal contaminated soils solidified/stabilized with cement-fly ash [J]. Rock and Soil Mechanics, 2019, 40(12): 4573-4580.
[14] WANG Dong-xing, WANG Hong-wei, ZOU Wei-lie, XU Xue-yong, . Study of durability of dredged sludge solidified with reactive MgO-fly ash [J]. Rock and Soil Mechanics, 2019, 40(12): 4675-4684.
[15] ZHANG Ting-ting, WANG Ping, LI Jiang-shan, WAN Yong, XUE Qiang, WANG Shi-quan, . Effect of curing time and lead concentration on mechanical properties of lead-contaminated soils stabilized by magnesium phosphate cement [J]. , 2018, 39(6): 2115-2123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .