Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (10): 2643-2654.doi: 10.16285/j.rsm.2021.2027

• Fundamental Theroy and Experimental Research •     Next Articles

Dynamic behaviors of MICP and fiber-treated calcareous sand under dynamic triaxial testing

WANG Rui, PAN Xiao-hua, TANG Chao-sheng, LÜ Chao, WANG Dian-long, DONG Zhi-hao, SHI Bin   

  1. School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
  • Received:2021-12-02 Revised:2022-06-15 Online:2022-10-19 Published:2022-10-17
  • Supported by:
    This work was supported by the National Science Foundation for Outstanding Young Scholars (41925012), the National Natural Science Foundation of China (41902271, 42007244) and the Natural Science Foundation of Jiangsu Province (BK20211087).

Abstract:

To improve the liquefaction resistance of calcareous sand foundations, microbially induced calcium carbonate precipitation (MICP) technology combined with fiber reinforcement technology was proposed to treat the calcareous sand in the South China Sea. Based on dynamic triaxial tests, the dynamic behaviors of MICP and fiber-treated calcareous sand were studied. The dynamic strain, dynamic pore pressure, cyclic stress-strain response and dynamic elastic modulus were analyzed. Then, the strengthening mechanism of MICP and fiber on the mechanical properties of the treated calcareous sand was explored from the microscopic point of view, based on the scanning electron microscope (SEM) test results. The results show that: (i) MICP could improve the deformation resistance and liquefaction resistance of calcareous sands. Compared with the untreated calcareous sand samples, the dynamic strain and dynamic pore pressure of calcareous sand treated by MICP decreased by 95.74% and 92.46%, respectively. (ii) The addition of fibers further improved the reinforcement effect of MICP. Compared to the MICP-treated samples, the dynamic strain and dynamic pore pressure of MICP and fiber-treated samples decreased by 74.32% and 74.18%, respectively. (iii) MICP and fiber reinforcement technologies improved the deformation resistance and liquefaction resistance of calcareous sand subjected to cyclic loading by reducing the cyclic activity strength and energy dissipation, increasing the dynamic elastic modulus and reducing the decay rate of the dynamic elastic modulus. (iv) The results of the SEM test showed that MICP and fiber reinforcement had a synergistic effect on the improvement of the mechanical properties of calcareous sands. The incorporation of fibers provided more spots for bacterial adhesion and promoted the formation of calcium carbonate crystals, which not only increased the bonding strength between sand particles, but also enhanced the restraint of fiber nets by fixing fibers and sand particles together.

Key words: calcareous sand, microbially induced calcium carbonate precipitation (MICP), fiber reinforcement, dynamic triaxial test, ground liquefaction, scanning electron microscope (SEM)

CLC Number: 

  • TU 441
[1] ZHANG Tao-lin, GENG Han-sheng, XU Hong-fa, MO Jia-quan, LIN Yi-fan, MA Lin-jian. Experimental study on calcareous sand grout material preparation and performance of consolidated solids [J]. Rock and Soil Mechanics, 2022, 43(S2): 327-336.
[2] ZENG Zhao-tian, LIANG Zhen, SUN Ling-yun, FU Hui-li, FAN Li-yun, PAN Bin, YU Hai-hao, . Experimental study on the influence factors of thermal conductivity of cement-bonded calcareous sand [J]. Rock and Soil Mechanics, 2022, 43(S1): 88-96.
[3] SHEN Jia-wei, ZHOU Bo, FU Ru, KU Quan, WANG Hua-bin, . Experimental study on single particle crushing strength and patterns of calcareous sand [J]. Rock and Soil Mechanics, 2022, 43(S1): 312-320.
[4] GAO Min, HE Shao-heng, XIA Tang-dai, DING Zhi, WANG Xin-gang, ZHANG Qiong-fang, . Particles breakage and shear strength characteristic of calcareous sand under complex stress path [J]. Rock and Soil Mechanics, 2022, 43(S1): 321-330.
[5] QIN Dong-lai, MENG Qing-shan, YAN Ke, QIN Qing-long, HUANG Xiao-fang, RAO Pei-sen, . Experimental study on particle size effect of shear strength and deformation of calcareous sand gravel [J]. Rock and Soil Mechanics, 2022, 43(S1): 331-338.
[6] ZHANG Xiao-yan, ZHANG Yi, ZHANG Jin-xun, WEI Kai-yuan, WANG Ning, . Experimental study on permeability and consolidation of calcareous sand mixed with rubber fiber [J]. Rock and Soil Mechanics, 2022, 43(8): 2115-2122.
[7] CHAI Yuan, NIU Yong, LÜ Hai-bo, . Experimental study on vertical bearing characteristics of a single pile in cemented calcareous sand layers [J]. Rock and Soil Mechanics, 2022, 43(8): 2203-2212.
[8] CHEN Bin, DENG Jian, HU Jie-ming, ZHANG Jian-lin, ZHANG Tao, . Macroscopic and microscopic experimental study on fractal fragmentation characteristics of calcareous sand during one-dimensional compression creep [J]. Rock and Soil Mechanics, 2022, 43(7): 1781-1790.
[9] CHEN Rui-min, JIAN Wen-bin, ZHANG Xiao-fang, FANG Ze-hua, . Experimental study on performance of sludge stabilized by CSFG-FR synergy [J]. Rock and Soil Mechanics, 2022, 43(4): 1020-1030.
[10] HU Cong, LONG Zhi-lin, KUANG Du-min, GONG Zhao-mao, YU Piao-yi, XU Guo-bin. Approach to 3D reconstruction of calcareous sand using 2D images of multi-view [J]. Rock and Soil Mechanics, 2022, 43(3): 761-768.
[11] ZHANG Qian, YE Wei-min, LIU Zhang-rong, WANG Qiong, CHEN Yong-gui, . Advances in soil cementation by biologically induced calcium carbonate precipitation [J]. Rock and Soil Mechanics, 2022, 43(2): 345-357.
[12] XIAO Yao, DENG Hua-feng, LI Jian-lin, CHENG Lei, ZHU Wen-xi. Study on the domestication of Sporosarcina pasteurii and strengthening effect of calcareous sand in seawater environment [J]. Rock and Soil Mechanics, 2022, 43(2): 395-404.
[13] LEI Hua-yang, XU Ying-gang, JIANG Ming-jing, LIU Xu, MIAO Jiang-yan, . Evolution mechanism of permeability of soft clay under coupled cyclic-seepage loads [J]. Rock and Soil Mechanics, 2022, 43(10): 2665-2674.
[14] GUO Ju-kun, WANG Rui, KOU Hai-lei, WEI Dao-kai, BIAN Gui-jian, LEI Sheng-you, . Experimental study on movement behavior of calcareous sand particles based on three-dimensional digital image correlation technology [J]. Rock and Soil Mechanics, 2022, 43(10): 2785-2798.
[15] WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming, GAO Lu-chao, . Experimental study on micro-erosion mechanism of cement stabilized calcareous sand under seawater environment [J]. Rock and Soil Mechanics, 2021, 42(7): 1871-1882.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[2] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[3] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[4] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[5] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[6] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[7] YANG Zhao-liang, SUN Guan-hua, ZHENG Hong. Global method for stability analysis of slopes based on Pan’s maximum principle[J]. , 2011, 32(2): 559 -563 .
[8] WANG Guang-jin,YANG Chun-he ,ZHANG Chao,MA Hong-ling,KONG Xiang-yun ,HO. Research on particle size grading and slope stability analysis of super-high dumping site[J]. , 2011, 32(3): 905 -913 .
[9] HU Hai-jun, JIANG Ming-jing, ZHAO Tao, PENG Jian-bing, LI Hong. Effects of specimen-preparing methods on tensile strength of remolded loess[J]. , 2009, 30(S2): 196 -199 .
[10] LI Min,CHAI Shou-xi,WANG Xiao-yan,WEI Li. Examination of reinforcement effect on basis of strength increment of reinforced saline soil with wheat straw and lime[J]. , 2011, 32(4): 1051 -1056 .