Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (12): 3281-3293.doi: 10.16285/j.rsm.2022.0039

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study on mesoscopic damage and fragmentation characteristics of hard rock under repeated particle impacts

JU Ming-he1, 2, TAO Ze-jun1, LI Xiao-feng3, YU Li-yuan1, JIANG Li-jie4, LI Xiao-zhao1   

  1. 1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 211116, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 3. Department of Civil & Mineral Engineering, University of Toronto, Toronto M5S1A4, Canada; 4. China Railway Engineering Equipment Group Co., Ltd., Zhengzhou, Henan 450016, China
  • Received:2022-01-08 Revised:2022-03-26 Online:2022-12-28 Published:2023-01-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52104101, 52179118), the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences (SKLGME021016) and the China Postdoctoral Science Foundation (2022M713369).

Abstract: Particle impact, a new drilling technology, has been applied in drilling and gas and oil exploitation. Also, it is considerably promising as an assisting rock breakage method for the excavation of tunnels in extremely hard rocks. In this paper, an experimental study was conducted to investigate the effects of particle impact number, particle strength, and particle impact velocity on the damage and fracture characteristics of surface crater in extremely hard granite. The three-dimensional morphology, rock fragment distribution, and fracture properties in the crater were quantitatively analyzed. The results indicate that the maximum depth of the crater increases in a parabolic way, while both the volume and surficial area of the crater grow linearly with the impact number. Moreover, the crater volume first increases and then decreases with the particle impact velocity, with a critical velocity of nearly 82.5 m/s. In addition, the mechanism difference of mesoscopic fragmentation inside and outside the crater center causes the double-peak characteristics of average size of fragments. The increase of volume, surficial area, and maximum depth of the crater are in linear relation to the kinetic energy of impacting particles in the double logarithmic coordinate. The fractal dimension variation trend of internal crack distribution in main minerals around the crater under different impact velocities and numbers were obtained through image-processing method. The experimental results manifest that the damage scale of rock crater is enlarged through improving particle velocity or impact number, while the former exerts a more significant effect.

Key words: rock dynamics, particle impact, assisting rock-breakage method, dynamic fragmentation, damage characteristics

CLC Number: 

  • TU45
[1] YANG Ke, ZHANG Zhai-nan, CHI Xiao-lou, LÜ Xin, WEI Zhen, LIU Wen-jie, . Experimental study on crack evolution and damage characteristics of water bearing sandstone under cyclic loading [J]. Rock and Soil Mechanics, 2022, 43(7): 1791-1802.
[2] CHEN Shi-jie, XIAO Ming, WANG Xiao-wei, CHEN Jun-tao, . Numerical analysis of seismic damage characteristics of an underground cavern intersected by a steeply dipped fault [J]. Rock and Soil Mechanics, 2021, 42(9): 2600-2610.
[3] PING Qi, SU Hai-peng, MA Dong-dong, ZHANG Hao, ZHANG Chuan-liang, . Experimental study on physical and dynamic mechanical properties of limestone after different high temperature treatments [J]. Rock and Soil Mechanics, 2021, 42(4): 932-942.
[4] WANG Kai-xing, DOU Lin-ming, PAN Yi-shan, OPARIN V N . Experimental study of incompatible dynamic response feature of block rock mass [J]. Rock and Soil Mechanics, 2020, 41(4): 1227-1234.
[5] ZHAO Guo-yan, LI Zhen-yang, WU Hao, WANG En-jie, LIU Lei-lei. Dynamic failure characteristics of sandstone with non-penetrating cracks [J]. Rock and Soil Mechanics, 2019, 40(S1): 73-81.
[6] LI Jie-lin, ZHU Long-yin, ZHOU Ke-ping, LIU Han-wen, CAO Shan-peng, . Damage characteristics of sandstone pore structure under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(9): 3524-3532.
[7] MENG Qing-shan, FAN Chao, ZENG Wei-xing, YU Ke-fu, . Tests on dynamic properties of coral-reef limestone in South China Sea [J]. Rock and Soil Mechanics, 2019, 40(1): 183-190.
[8] QIN Qing-ci, LI Ke-gang, YANG Bao-wei, WANG Ting, ZHANG Xue-ya, GUO Wen. Analysis of damage characteristics of key characteristic points in rock complete stress-strain process [J]. Rock and Soil Mechanics, 2018, 39(S2): 14-24.
[9] WANG Chun, TANG Li-zhong, CHENG Lu-ping, CHEN Yuan, LIU Tao, WEI Yong-heng,. Damage characteristics and constitutive model of rock under three- dimensional high static load and frequent dynamic disturbance [J]. , 2017, 38(8): 2286-2296.
[10] LU Ying-fa. Reflections on rock and soil mechanics research [J]. , 2016, 37(S1): 133-139.
[11] DING Wu-xiu ,CHEN Jian-ping ,XU Tao ,CHEN Hua-jun ,WANG Hong-yi,. Mechanical and chemical characteristics of limestone during chemical erosion [J]. , 2015, 36(7): 1825-1830.
[12] CAI Can ,WU Kai-song ,LIAN Dong ,YUAN Xiao-hong,. Study of rock-breaking mechanism under single-tooth impact [J]. , 2015, 36(6): 1659-1666.
[13] ZHAO Guang-ming , MA Wen-wei , MENG Xiang-rui , . Damage modes and energy characteristics of rock-like materials under dynamic load [J]. , 2015, 36(12): 3598-3605.
[14] XU Song-lin , LIU Yong-gui , XI Dao-ying , LI Guang-chang , DU Yun. Analysis of variation of elastic wave velocity in rock mass under unloading condition [J]. , 2011, 32(10): 2907-2916.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .