Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (2): 451-460.doi: 10.16285/j.rsm.2022.0239

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effects of lead contamination on macro-water retention and micro-structural evolution of loess

WEN Shao-jie1, 2, CHENG Wen-chieh1, 2, HU Wen-le1, 2   

  1. 1. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China; 2. Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China
  • Received:2022-03-03 Accepted:2022-08-29 Online:2023-02-10 Published:2023-02-17
  • Supported by:
    This work was supported by the Youth Program of the Organization Department of the Central Committee of the CPC “National Overseas High-level Talents Introduction Program” (2019).

Abstract: The physical and chemical reactions between heavy metals in landfill leachate and soil may change the microstructure of soil, then the diffusion and migration of heavy metals and other toxic substances, threaten human health and surrounding environment. In order to investigate the effects of heavy metal contamination on macroscopic water retention and microstructure of loess, the soil-water characteristic curves of Pb-contaminated loess were measured by axial translation technique. Characterization of mesoscopic structure changes was clarified by scanning electron microscopy (SEM), mercury injection (MIP), X-ray diffraction (XRD) and Zeta potential. The results show that the air-entry values of Pb-contaminated loess decrease with the increase of Pb-concentration. When the lead pollution concentration increases from 0 mg/kg to 2 000 mg/kg, the air-entry values decrease from 19.18 kPa to 12.12 kPa, indicating that lead contamination lead to a decrease in water retention. On the contrary, the permeability increases with the increase of lead concentrations. The saturated permeability coefficient increases from 7.92×10–8 m/s to 3.73×10–7 m/s. The physicochemical reaction and reduction of Zeta potential caused by lead contamination produce flocculation structure, and the proportion of small pores decreases while that of medium pores increases. The microscale structural evolution has a good correspondence, induced by the lead contamination, with macroscopic water retention capacity and permeability. The results can provide important parameters for the study of unsaturated seepage and solute transport in heavy metal contaminated sites.

Key words: contaminated soil, heavy metal, micro-structure, soil-water characteristic curve, matrix suction, permeability properties

CLC Number: 

  • TU 444
[1] LIU Yi-zhao, LU Yang, LIU Song-yu, . Study on chemical compatibility of amended cement-soil vertical cutoff wall permeated with heavy metal solutions [J]. Rock and Soil Mechanics, 2023, 44(2): 497-506.
[2] CHEN Yong, SU Jian, CAO Ling, WANG li, WANG Shi-mei, . Evolution law of the soil-water characteristic curve based on data mining method [J]. Rock and Soil Mechanics, 2022, 43(S2): 23-34.
[3] FENG Chen, LI Jiang-shan, LIU Jin-du, XUE Qiang, . Experimental study on the compaction characteristics and microstructure of arsenic and cadmium co-contaminated soil [J]. Rock and Soil Mechanics, 2022, 43(S2): 171-182.
[4] LI Min, YU He-miao, MA Guo-wei, CHAI Shou-xi, . Study on control of lime-fly ash solidification on migration of petroleum pollutants in saline soil [J]. Rock and Soil Mechanics, 2022, 43(S2): 337-344.
[5] LIU Kuan, YE Wan-jun, GAO Hai-jun, DONG Qi, . Evolution law and microscopic mechanism of shear strength of acid- or alkali-contaminated loess [J]. Rock and Soil Mechanics, 2022, 43(S1): 1-12.
[6] LI Li-hua, FANG Ya-nan, XIAO Heng-lin, LI Wen-tao, CAO Yu, XU Ke, . Characterization of Cd-contaminated soil solidified/stabilized by red mud-based binders [J]. Rock and Soil Mechanics, 2022, 43(S1): 193-202.
[7] ZHOU Bing-hong. A simplified method to estimate soil-water characteristic curve for sandy soil [J]. Rock and Soil Mechanics, 2022, 43(S1): 222-228.
[8] PAN Zhen-hui, XIAO Tao, LI Ping, . Influences of compaction degree and molding water content on microstructure and hydraulic characteristics of compacted loess [J]. Rock and Soil Mechanics, 2022, 43(S1): 357-366.
[9] WANG Hai-man, NI Wan-kui, LIU Kui, . Rapid prediction method of soil-water characteristic curve of Yan’an compacted loess [J]. Rock and Soil Mechanics, 2022, 43(7): 1845-1853.
[10] GAO You, LI Ze, SUN De-an, YU Hai-hao, CHEN Bo, . Unimodal and bimodal soil-water characteristic curves model considering the effect of initial void ratio [J]. Rock and Soil Mechanics, 2022, 43(6): 1441-1452.
[11] LI Xu, LIU A-qiang, LIU Li, LIU Yan, WU Yong-kang. A rapid method for determining the soil-water characteristic curves in the full suction range [J]. Rock and Soil Mechanics, 2022, 43(2): 299-306.
[12] LI Chi, TIAN Lei, DONG Cai-huan, ZHANG Yong-feng, WANG Yan-xing, . Experimental study on zinc-lead composite contaminated soil solidified/stabilized by MICP technology combined with porous silicon adsorption materials [J]. Rock and Soil Mechanics, 2022, 43(2): 307-316.
[13] ZHOU Shi-ji, DU Yan-jun, NI Hao, SUN Hui-yang, LI Jiang-shan, YANG Yu-ling, . Mechanisms analysis of the effect of compaction degree on the properties of arsenic and antimony co-contaminated soil stabilized by ferric salts [J]. Rock and Soil Mechanics, 2022, 43(2): 432-442.
[14] LI Yan, CHENG Yu-han, ZHAI Yue, WEI Sheng-yu, YANG Yu-bing, ZHAO Rui-feng, LIANG Wen-biao. Micro-structure characteristics and dynamic mechanical properties of granite after high temperature [J]. Rock and Soil Mechanics, 2022, 43(12): 3316-3326.
[15] XU Tao, BAI Bing, . Hysteresis model of soil-water characteristic curves driven by cyclic temperature [J]. Rock and Soil Mechanics, 2022, 43(12): 3393-3402.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .