Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (S1): 1-12.doi: 10.16285/j.rsm.2020.0401

• Fundamental Theroy and Experimental Research •     Next Articles

Evolution law and microscopic mechanism of shear strength of acid- or alkali-contaminated loess

LIU Kuan1, YE Wan-jun1, GAO Hai-jun2, DONG Qi3   

  1. 1. School of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, China; 2. Yan’an Highway Administration Bureau of Shaanxi Province, Yan’an, Shaanxi 716000, China; 3. Shaanxi Science and Technology Holding Group Co., Ltd., Xi’an, Shaanxi 710003, China
  • Received:2020-04-07 Revised:2021-03-16 Online:2022-06-30 Published:2022-07-13
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(41672305, 42072319) and the Key R&D Project of Shaanxi Province of China (2017ZDXM-SF-082)

Abstract: To explore the influence of acid or alkali contamination on the shear strength of natural loess, the intact loess samples were first immersed in various concentrations of HCl and NaOH solutions. Then, triaxial shear tests, scanning electron microscopy tests, and mercury intrusion tests were carried out, and the soil chemical composition as well as liquid and plastic limits were measured, so as to assess the influence of acid or alkali contamination on the shear strength, microstructure, chemical composition and plasticity of loess. The results indicate that with the increase of the acid concentration, the peak of soil stress-strain curve attenuates, the shear strength deteriorates, the cohesion decreases exponentially, and the internal friction angle is relatively stable. As the alkali concentration increases, both the peak of soil stress-strain curve and the shear strength increase, the cohesion enhances markedly, and the internal friction angle enlarges slightly. Acid contamination breaks the soil particles, dissolves the cementing material, blurs the boundary between particles and pores, and increases the number and size of pores between skeleton particles and those between clay particles. Alkali contamination leads to the scaffold pore collapse of the soil, and the secondary cementation balances the local damage and strengthens the structural connection. Besides, the content and size of pores between skeleton particles decrease while more pores with a smaller size form between the clay particles. After soaking in acid solutions, the cation content in the soil increases notably, the calcium carbonate content decreases sharply, and the liquid and plastic limits are reduced. After soaking in alkaline solutions, both Al3+ and calcium carbonate in soil increase slightly, other cations decrease gently, and the liquid and plastic limits increase. Based on the analysis of test results, the microscopic mechanism of the evolution of the shear strength of loess contaminated by acid or alkali was summarized. Acid or alkali contamination resulted in mineral dissolution, ion exchange, and adjustment of particle and pore structure in the soil, destroying the initial structure of the soil and facilitating the formation of new structures. It is the damage of the initial structure or the new structure formation taking the dominance that decides the comprehensive effect improving or impairing the shear strength of the soil.

Key words: soil mechanics, intact loess, acid- or alkali-contaminated soil, shear strength, microscopic mechanism

CLC Number: 

  • TU411
[1] TANG Hua, YAN Song, YANG Xing-hong, WU Zhen-jun, . Shear strength and microstructure of completely decomposed migmatitic granite under different water contents [J]. Rock and Soil Mechanics, 2022, 43(S1): 55-66.
[2] ZENG Li-feng, SHAO Long-tan, GUO Xiao-xia, . Origin and development of the concept of effective stress for soils [J]. Rock and Soil Mechanics, 2022, 43(S1): 127-144.
[3] LI Li-hua, FANG Ya-nan, XIAO Heng-lin, LI Wen-tao, CAO Yu, XU Ke, . Characterization of Cd-contaminated soil solidified/stabilized by red mud-based binders [J]. Rock and Soil Mechanics, 2022, 43(S1): 193-202.
[4] ZHENG Wei-wei, HONG Yi, WANG Li-zhong, . Calculation model of undrained shear strength of gassy soft soil [J]. Rock and Soil Mechanics, 2022, 43(8): 2233-2240.
[5] CHEN Rui, ZHANG Xing, HAO Ruo-yu, BAO Wei-xing. Shear strength deterioration of geopolymer stabilized loess under wet-dry cycles: mechanisms and prediction model [J]. Rock and Soil Mechanics, 2022, 43(5): 1164-1174.
[6] SHAN Ren-liang, TONG Xiao, HUANG Peng-cheng, YUAN Hong-hu, BAO Yong-sheng, LIU Nan. Research on the anchor cable combined with the c-shaped tube and the mechanical properties [J]. Rock and Soil Mechanics, 2022, 43(3): 602-614.
[7] LI Min, YU He-miao, DU Hong-pu, CAO Bao-yu, CHAI Shou-xi, . Mechanical properties of saline soil solidified with the mixture of lime, fly ash and modified polyvinyl alcohol under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2022, 43(2): 489-498.
[8] YANG Zhou, CHENG Xiao-hui, MA Qiang, LIU Wei, XIE Zhuang-zi, . Study of strength indices for undrained stability analysis of high filled ground [J]. Rock and Soil Mechanics, 2022, 43(1): 218-226.
[9] SONG Lei-bo, KANG Qian-qian, DU Shi-gui, ZHONG Zhen, WANG Gang, WANG Xing-kai, HAN Guan-sheng, ZHAO Jin-shuai, . Anisotropy mechanism of shear strength based on wear and shear failure evolution of asperities of joint surface [J]. Rock and Soil Mechanics, 2021, 42(9): 2331-2343.
[10] JIANG Tong, ZHAI Tian-ya, ZHANG Jun-ran, ZHAO Jin-di, WANG Li-jin, SONG Chen-yu, PAN Xu-wei. Diametric splitting tests on loess based on particle image velocimetry technique [J]. Rock and Soil Mechanics, 2021, 42(8): 2120-2126.
[11] XIA Xin, JIANG Yuan-jun, SU Li-jun, MEHTAB Alam, LI Jia-jia, . Estimation model of limit values of shear strength of root-bearing soil based on interface bonding [J]. Rock and Soil Mechanics, 2021, 42(8): 2173-2184.
[12] FAN Xiang, DENG Zhi-ying, CUI Zhi-meng, HE Zhong-ming, LIN Hang, . A new peak shear strength model for soft-hard joint [J]. Rock and Soil Mechanics, 2021, 42(7): 1861-1870.
[13] WANG Bin, HAN You-ming, ZHOU Xin, CHEN Cheng, ZHANG Xian-wei, GUI Lei, . In-situ test of shear modulus decay characteristics of lacustrine clay layer in Taihu Lake [J]. Rock and Soil Mechanics, 2021, 42(7): 2031-2040.
[14] WANG Jia-hui, RAO Xi-bao, JIANG Ji-wei, YAO Jin-song, XIONG Shi-hu, LU Yi-wei, LI Hao-min, . Model experimental study of the shear mechanism of vibroflotation stone column composite foundation [J]. Rock and Soil Mechanics, 2021, 42(4): 1095-1103.
[15] LIU Jia, FENG De-luan, . A multi-scale coupling finite element method based on the microscopic soil particle motions [J]. Rock and Soil Mechanics, 2021, 42(4): 1186-1200.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .