Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (3): 810-820.doi: 10.16285/j.rsm.2022.0496

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study on critical state strength characteristics of granular material-structure interface under high-frequency vibration

JIANG Hai-bo1, 2, FU Long-long1, 2, ZHOU Shun-hua1, 2, GUO Pei-jun3, YE Wei-tao1, 2   

  1. 1. Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China; 2. Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University, Shanghai 201804, China; 3. Department of Civil Engineering, McMaster University, Hamilton, Canada
  • Received:2022-04-12 Accepted:2022-05-31 Online:2023-03-21 Published:2023-03-24
  • Supported by:
    This work was supported by the Science and Technology Commission of Shanghai Municipality (21142200400).

Abstract: The pile foundation of bridges and subgrades in high-speed railway engineering are frequently suffered from train-induced vibration. The train-induced vibration under a speed of 350 km/h reaches approximately 40 Hz, while a higher speed may do harm to the bearing capacity of the pile foundation. The soil-structure interface plays an important role in force and deformation transformation in pile-soil interaction, largely determining ultimate strength and long-term settlement. However, understanding of the behavior of soil-structure interfaces under high-frequency vibration is still very limited. Using a self-designed interface shear apparatus, which can achieve coupled vibration and high-frequency vibration, the critical state strength of the granular material-structure interface is investigated. The influences of vibration acceleration, frequency, normal stress, particle shape and surface roughness are studied. Test results show that vibrations lower the strength of interfaces. The shear strength under certain vibration conditions is even lower than half of that under static conditions. The weakening degree of interface strength under vibration increases with vibration acceleration and frequency, while decreases with normal stress. Based on Mohr-Coulomb strength theory, the strength criterion of the granular material-structure interface under vibration is built.

Key words: granular material-structure interface, high-frequency vibration, shear strength, vibro-induced weakening, coupled vibration and monotonic direct shear

CLC Number: 

  • TU435
[1] ZHOU En-quan, YAO Yuan, CUI Lei, WANG Long, . Shear strength characteristics of unsaturated rubber silt mixtures [J]. Rock and Soil Mechanics, 2023, 44(7): 1949-1958.
[2] FAN Lei, YU Mei-wan, WU Ai-qing, XIANG Qian. Evolution of shear strength of interlayer dislocation zone under hydro-mechanical coupling conditions [J]. Rock and Soil Mechanics, 2023, 44(7): 1959-1970.
[3] ZHANG Yan-jie, HE Meng, SONG Meng, CAO Li, ZHAO Hai-tao, LI Mei. Study on mechanical properties of water-rich sandy pebble soil [J]. Rock and Soil Mechanics, 2023, 44(6): 1739-1747.
[4] LI Hong-ru, LIANG Heng-nan, . Study on the difference of mechanical properties of artificial structured loess with different binders [J]. Rock and Soil Mechanics, 2023, 44(5): 1416-1424.
[5] ZHAO Yu-xin, LI Xu, LIN Sen, WANG Xiao-meng, . An improved shear strength model of unsaturated soils over a wide suction range [J]. Rock and Soil Mechanics, 2023, 44(4): 990-1000.
[6] CHEN Xi. A new theoretical peak shear strength criterion of rock joint based on the directional roughness parameter [J]. Rock and Soil Mechanics, 2023, 44(4): 1075-1088.
[7] LIN Hai, ZENG Yi-fan, ZHOU Chuang-bing, DONG Ping-xiao, SHI Jian-yong, . Experimental research on the shear characteristics of the composite liner consisting of wrinkled geomembrane and needle punched geosynthetic clay liner [J]. Rock and Soil Mechanics, 2023, 44(2): 355-361.
[8] WANG Yuan-zhan, GONG Xiao-long, WANG Xuan, CHEN Yan-ping, XIE Tao, . Study on cyclic cumulative pore pressure and strength evolution of soda residue soil under anisotropic consolidation [J]. Rock and Soil Mechanics, 2023, 44(2): 373-380.
[9] ZHANG Zhi-fei, HUANG Man, TANG Zhi-cheng, . Empirical criterion for evaluating the peak shear strength of discontinuity with different joint wall strengths [J]. Rock and Soil Mechanics, 2023, 44(2): 507-519.
[10] XIAO Han, DONG Chao-qiang, ZHANG Rong-jun, LU Zhan, ZHENG Jun-jie. Effect of quicklime on solidification efficiency of mud slurry treated by physicochemical composite method [J]. Rock and Soil Mechanics, 2022, 43(S2): 214-222.
[11] LIU Kuan, YE Wan-jun, GAO Hai-jun, DONG Qi, . Evolution law and microscopic mechanism of shear strength of acid- or alkali-contaminated loess [J]. Rock and Soil Mechanics, 2022, 43(S1): 1-12.
[12] TANG Hua, YAN Song, YANG Xing-hong, WU Zhen-jun, . Shear strength and microstructure of completely decomposed migmatitic granite under different water contents [J]. Rock and Soil Mechanics, 2022, 43(S1): 55-66.
[13] ZENG Li-feng, SHAO Long-tan, GUO Xiao-xia, . Origin and development of the concept of effective stress for soils [J]. Rock and Soil Mechanics, 2022, 43(S1): 127-144.
[14] LI Li-hua, FANG Ya-nan, XIAO Heng-lin, LI Wen-tao, CAO Yu, XU Ke, . Characterization of Cd-contaminated soil solidified/stabilized by red mud-based binders [J]. Rock and Soil Mechanics, 2022, 43(S1): 193-202.
[15] ZHANG Lei, LÜ Yan-dong, WANG Bing-hui, JIN Dan-dan, ZHU Ming-xing, FANG Chen, . Laboratory study of consolidation of marine soft soil using flocculation-vacuum preloading-electro-osmosis [J]. Rock and Soil Mechanics, 2022, 43(9): 2383-2390.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Kui, GAO Bo. Study of construction schemes for metro tunnel crossing river and bridge[J]. , 2010, 31(5): 1509 -1516 .
[2] YANG Bing, YANG Jun, CHANG Zai, GAN Hou-yi, SONG Er-xiang. 3-D granular simulation for compressibility of soil-aggregate mixture[J]. , 2010, 31(5): 1645 -1650 .
[3] XIAO Shi-guo,XIAN Fei,WANG Huan-long. 一种微型桩组合抗滑结构内力分析方法[J]. , 2010, 31(8): 2553 -2559 .
[4] YE Hai-lin, ZHENG Ying-ren, HUANG Run-qiu, DU Xiu-li, LI An-hong4, XU Jiang-bo. Study of application of strength reduction dynamic analysis method to aseismic design of anti-slide piles for landslide[J]. , 2010, 31(S1): 317 -323 .
[5] ZHANG Zhi-pei, PENG Hui, RAO Xiao. Numerical simulation study of grouting diffusion process in soft soil foundation[J]. , 2011, 32(S1): 652 -0655 .
[6] WU Li-zhou , ZHANG Li-min , HUANG Run-qiu. Analytic solution to coupled seepage in layered unsaturated soils[J]. , 2011, 32(8): 2391 -2396 .
[7] LIU Run , WANG Xiu-yan , LIU Yue-hui , WANG Wu-gang. Thermal buckling analysis of submarine buried pipelines with isolated prop initial imperfection[J]. , 2011, 32(S2): 64 -69 .
[8] LIANG Yao-zhe. Analysis of active earth pressure of rigid pile composite foundation[J]. , 2012, 33(S1): 25 -29 .
[9] HAN Jian-xin , LI Shu-cai , LI Shu-chen , YANG Wei-min , WANG Lei . Study of post-peak stress-strain relationship of rock material based on evolution of strength parameters[J]. , 2013, 34(2): 342 -346 .
[10] HUANG Da , CEN Duo-feng , HUANG Run-qiu . Influence of medium strain rate on sandstone with a single pre-crack under uniaxial compression using PFC simulation[J]. , 2013, 34(2): 535 -545 .