Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (S1): 83-90.doi: 10.16285/j.rsm.2022.0672

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Research on crack initiation mechanism and critical water pressure of basalt under hydraulic coupling

ZHU Ze-qi1, 2, TIAN Kai-wei1, XU Qi-zhong3, CUI Lan1, 2, SHENG Qian1, 2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. National and Local Joint Engineering Research Center for Underwater Tunnel Technology, Wuhan, Hubei 430071, China; 3. College of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang, Liaoning 110870, China
  • Received:2022-05-07 Accepted:2022-06-30 Online:2023-11-16 Published:2023-11-16
  • Supported by:
    This work was supported by the Key Program of Joint Funds of National Natural Science Foundation of China (U21A20159).

Abstract: In order to study the crack initiation mechanism of rock under hydraulic coupling, hydraulic coupling triaxial test and acoustic emission test were carried out on Xiluodu basalt. The test results show that the peak strength of basalt increases with the increase of confining pressure, showing a typical hard brittle behavior. When the confining pressure remains unchanged, the peak strength decreases gradually with the increase of initial water pressure, and the hard brittleness decreases at the same time. The acoustic emission test results show that the crack initiation of basalt under hydraulic coupling is tensile failure, which is mainly tensile failure and supplemented by shear failure in the stable crack propagation stage, and these failures mainly occur in the middle of the rock. In the post peak stage of unstable crack propagation, the rock fracture is mainly characterized by shear failure. Based on the understanding of crack initiation mechanism, the critical hydraulic failure criterion of rock crack initiation under hydraulic coupling condition is derived with the help of the single circular hole theory, which is then introduced into the numerical simulation of basalt hydraulic coupling triaxial test. The hydraulic coupling failure process and water pressure distribution law of basalt are analyzed. The rationality of the critical hydraulic failure criterion is verified, and it has a good reference value for the study of rock failure process under hydraulic coupling.

Key words: hydraulic coupling, basalt, acoustic emission, critical water pressure, failure criterion

CLC Number: 

  • TU 453
[1] SHAO Shuai, SHAO Sheng-jun, GAO Meng-jie, LIU Xiao-kang, WANG Li-xin, YAN Guang-yi, . Applicability of unsaturated loess to hydraulic coupling elastoplastic model [J]. Rock and Soil Mechanics, 2023, 44(S1): 436-442.
[2] SONG Shuo, REN Fu-qiang, CHANG Lai-shan, . Experimental investigation on the failure and acoustic emission characteristics of coal-rock combination with prestressed bolt [J]. Rock and Soil Mechanics, 2023, 44(S1): 449-460.
[3] HUA Cheng-ya, YAO Lei-hua. Unity of three types of energy catastrophe criteria for slope failure [J]. Rock and Soil Mechanics, 2023, 44(S1): 603-611.
[4] YU Yang, WANG Ze-hua, TANG Cai-xuan. Energy evolution and fractal characteristics of acid corroded granite under uniaxial compression [J]. Rock and Soil Mechanics, 2023, 44(7): 1971-1982.
[5] YUE Hao, YANG Sheng-li, ZHAI Rui-hao, ZHANG Shen, CUI Xuan. Study of the mechanical properties of sand-bearing rocks and their disaster-causing mechanisms [J]. Rock and Soil Mechanics, 2023, 44(4): 1230-1244.
[6] ZHANG Guang, WU Shun-chuan, , , ZHANG Shi-huai, GUO Pei. P-wave velocity tomography and acoustic emission characteristics of sandstone under uniaxial compression [J]. Rock and Soil Mechanics, 2023, 44(2): 483-496.
[7] LI Guo-xiao, WANG Hang-long, PENG Jun, WANG Lin-fei, DAI Bi-bo, . Strength model of anisotropic rocks based on Hoek-Brown criterion [J]. Rock and Soil Mechanics, 2023, 44(12): 3541-3550.
[8] LI Yuan, WEI Ming-li, LIU Lei, WEI Wei, CHEN Yi-jun, . Strength characteristics and mechanism analysis of fiber reinforced highly cohesive tailings solidified using high-calcium geopolymer [J]. Rock and Soil Mechanics, 2023, 44(1): 43-53.
[9] LUO Dan-ni, LU Si-hang, SU Guo-shao, TAO Hong-hui, . Experimental study on rock burst of granite with prefabricated single crack under true-triaxial stress condition with a free face [J]. Rock and Soil Mechanics, 2023, 44(1): 75-87.
[10] GUO Jia-qi, CHENG Li-pan, ZHU Bin-zhong, TIAN Yong-chao, HUANG Xin. Shear mechanical properties and energy characteristics of rock joints under continuous excavation effect [J]. Rock and Soil Mechanics, 2023, 44(1): 131-143.
[11] LI Dong-dong, SHENG Qian, XIAO Ming, WANG Xiao-mao, . Meso-mechanism of surrounding rock local damage of underground powerhouse cavern based on improved particle flow acoustic emission sheet [J]. Rock and Soil Mechanics, 2022, 43(S2): 117-129.
[12] ZHANG Dong-xiao, GUO Wei-yao, ZHAO Tong-bin, GU Xue-bin, CHEN Le-xin, . Experimental study on directional propagation of rock type-Ⅰ crack [J]. Rock and Soil Mechanics, 2022, 43(S2): 231-244.
[13] WANG Li, NI Bin, XIE Wei, WANG Shu-zhao, KOU Kun, ZHAO Kui, . Microscopic-macroscopic crack evolution mechanism of yellow sandstone with different particle sizes [J]. Rock and Soil Mechanics, 2022, 43(S2): 373-381.
[14] ZHU Xing, LIU Han-xiang, HU Jie-wei, FAN Jie, . Experimental study on precursory characteristics of acoustic emission of sandstone failure based on critical slowing down [J]. Rock and Soil Mechanics, 2022, 43(S1): 164-172.
[15] HU He-xiang, YAO Yang-ping, LUO Ting, JIN Xiao-fei, . Soil strength equation under plane strain condition based on Lade-Duncan criterion [J]. Rock and Soil Mechanics, 2022, 43(S1): 389-396.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Chang-yu, ZHANG Wei, LI Si-shen, ZHU Guo-sheng. Research on mechanical clogging mechanism of releaf well and its control method[J]. , 2009, 30(10): 3181 -3187 .
[2] CHEN Hong-jiang, LI Xi-bing, LIU Ai-hua. Studies of water source determination method of mine water inrush based on Bayes’ multi-group stepwise discriminant analysis theory[J]. , 2009, 30(12): 3655 -3659 .
[3] HE Fa-guo, CHEN Wen-wu, HAN Wen-feng, ZHANG Jing-ke. Correlation of microstructure indices and performance of sand solidified with polymer material SH[J]. , 2009, 30(12): 3803 -3807 .
[4] LEI Yong-sheng. Research on protective measures of City Wall and Bell Tower due to underneath crossing Xi’an Metro Line No.2[J]. , 2010, 31(1): 223 -228 .
[5] XIAO Zhong, WANG Yuan-zhan, JI Chun-ning, HUANG Tai-kun, SHAN Xu. Stability analysis of large cylindrical structure for strengthening soft foundation under wave load[J]. , 2010, 31(8): 2648 -2654 .
[6] CHAI Bo, YIN Kun-long, CHEN Li-xia, LI Yuan-yao. Analysis of slope deformation under control of rock mass structure[J]. , 2009, 30(2): 521 -525 .
[7] ZHAO Hong-bo, RU Zhong-liang, ZHANG Shi-ke. Application of support vector machine to reliability analysis of underground engineering[J]. , 2009, 30(2): 526 -530 .
[8] XU Yang, GAO Qian, LI Xin, LI Jun-hua, JIA Yun-xi. In-situ experimental study of permeability of rock and soil aggregates[J]. , 2009, 30(3): 855 -858 .
[9] ZHANG Ding-wen,LIU Song-yu,GU Chen-ying. Elastoplastic analysis of cylindrical cavity expansion with anisotropic initial stress[J]. , 2009, 30(6): 1631 -1634 .
[10] DENG Hua-feng,ZHANG Guo-dong,WANG Le-hua,DENG Cheng-jin,GUO Jing,LU Tao. Monitoring and analysis of blasting vibration in diversion tunnel excavation[J]. , 2011, 32(3): 855 -860 .