Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (3): 884-895.doi: 10.16285/j.rsm.2022.1321

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Testing of coral sand thermal physical parameters and comparative analysis of prediction models

PENG Yun1, 2, HU Ming-jian1, A Ying3, WANG Xue-qing1, 4   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. College of Civil Engineering and Architecture, Guilin University of Technology, Guilin, Guangxi 541004, China; 3. WISDRI City Construction Engineering & Research Incorporation Ltd., Wuhan, Hubei 430062, China; 4. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-07-03 Accepted:2022-08-20 Online:2023-03-21 Published:2023-03-24
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41572304).

Abstract: The construction of islands and reefs in the South China Sea is progressing smoothly under the strengthening of China’s maritime development. The ground source heat pump technology and energy pile etc., which take shallow reef flat as medium, are essentially a process of energy exchange with reef sand medium, so it is necessary to further grasp the evolution law of thermal conductivity of coral sand. In this paper, coral fine sand of South China Sea reef was examined. Three thermophysical parameters including thermal conductivity, volumetric heat capacity, and thermal diffusivity, were measured, and the influence of dry density and water content on the thermophysical parameters were analyzed. The predicted data by 12 thermophysical parameter models for sand soil were compared with the measured data for analogical analysis. On this basis, an empirical model suitable for predicting the thermal conductivity of coral fine sand was developed. The results show that the thermal conductivity, volumetric heat capacity and thermal diffusivity of coral sand are positively correlated with dry density, and the correlation coefficients of thermal conductivity and volumetric heat capacity with water content are higher than that of dry density, while the correlation coefficient of thermal diffusivity with water content has a “convex” growth relationship, and the correlation coefficient with dry density is much higher than that of water content. The Cote & Konrad model and the Gangadhara Rao model were amended through the linear regression analysis of the measured data. The prediction accuracy of thermal conductivity of coral fine sand by the model was significantly improved. The difference between the predicted and measured values of the volumetric heat capacity of coral sand was significantly reduced by the linear correction of the De Vries model and the Xu model. Based on the binary fitting analysis of the correlation coefficient of Dai model, a prediction model characterizing the thermal diffusivity of coral fine sand was established to provide reference for the design of insulation and temperature control engineering of island reefs as well as the study of thermophysical properties of coral sand.

Key words: coral sand, thermophysical parameters, water content, dry density, predictive model

CLC Number: 

  • TU411
[1] QIN You, DU Xin-yu, MA Wei-jia, WU Qi, CHEN Guo-xing, . A stress-based model for the generation of excess pore water pressure in saturated coral sand subjected to various cyclic stress paths [J]. Rock and Soil Mechanics, 2023, 44(6): 1729-1738.
[2] ZHANG Ji-ru, ZHENG Yan-jun, PENG Wei-ke, WANG Lei, CHEN Jing-xin. Applicability of power-law stress-strain model for coral sand under earth fill stress path [J]. Rock and Soil Mechanics, 2023, 44(5): 1309-1318.
[3] LUO Zhao-gang, DING Xuan-ming, OU Qiang, JIANG Chun-yong, FANG Hua-qiang, . Experimental study on strength and deformation characteristics of coral sand reinforced by geogrid [J]. Rock and Soil Mechanics, 2023, 44(4): 1053-1064.
[4] SUN Xiao-ming, JIANG Ming, WANG Xin-bo, ZANG Jin-cheng, GAO Xiang, MIAO Cheng-yu, . Experimental study on creep mechanical properties of sandstone with different water contents in Wanfu coal mine [J]. Rock and Soil Mechanics, 2023, 44(3): 624-636.
[5] XIAO Han, DONG Chao-qiang, ZHANG Rong-jun, LU Zhan, ZHENG Jun-jie. Effect of quicklime on solidification efficiency of mud slurry treated by physicochemical composite method [J]. Rock and Soil Mechanics, 2022, 43(S2): 214-222.
[6] MA Deng-hui, HAN Xun, GUAN Yun-fei, TANG Yi, . Pore structure and seepage characteristics analysis of coral sand particles [J]. Rock and Soil Mechanics, 2022, 43(S2): 223-230.
[7] ZHANG Lei, TIAN Miao-miao, LU Shuo, LI Ming-xue, LI Jing-hua, . Analysis of permeability variation and stress sensitivity of liquid nitrogen fracturing coal with different water contents [J]. Rock and Soil Mechanics, 2022, 43(S1): 107-116.
[8] PAN Zhen-hui, XIAO Tao, LI Ping, . Influences of compaction degree and molding water content on microstructure and hydraulic characteristics of compacted loess [J]. Rock and Soil Mechanics, 2022, 43(S1): 357-366.
[9] OU Xiao-duo, GAN Yu, PAN Xin, JIANG Jie, QIN Ying-hong, . Experimental study on thermal conductivity of remodel expansive rock and its influence factors [J]. Rock and Soil Mechanics, 2022, 43(S1): 367-374.
[10] DING Yu, JIA Yu, WANG Xuan, ZHANG Jia-sheng, CHEN Xiao-bin, LUO Hao, ZHANG Yu, . Influence of particle size distribution and initial dry density on the characteristics of subgrade mud pumping [J]. Rock and Soil Mechanics, 2022, 43(9): 2539-2549.
[11] JIN Zong-chuan, WANG Xue-qing, WU Xiao-ming, PENG Yun, . Testing and analysis of soil thermal parameters and their influencing factors [J]. Rock and Soil Mechanics, 2022, 43(5): 1335-1340.
[12] HOU Le-le, WENG Xiao-lin, LI Lin, ZHOU Rong-ming, . A critical state model for structural loess considering water content [J]. Rock and Soil Mechanics, 2022, 43(3): 737-748.
[13] JIN Jie-fang, XU Hong, YU Xiong, LIAO Zhan-xiang. Effect of dynamic load and water content on failure and energy dissipation characteristics of red sandstone [J]. Rock and Soil Mechanics, 2022, 43(12): 3231-3240.
[14] KONG Ling-ming, LIANG Ke, PENG Li-yun. Experimental study on the influence of specific surface area on the soil-freezing characteristic curve [J]. Rock and Soil Mechanics, 2021, 42(7): 1883-1893.
[15] LIU Kang, CHEN Guo-xing, WU Qi, MA Wei-jia, QIN You, . Effects of cyclic loading directions on liquefaction characteristics of saturated coral sand [J]. Rock and Soil Mechanics, 2021, 42(7): 1951-1960.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Guang-yong,GU Jin-cai,CHEN An-min,XU Jing-mao,ZHANG Xiang-yang. Research on explosion resisting performance of tunnels reinforced by fully bonded rock bolts in model test[J]. , 2010, 31(1): 107 -112 .
[2] LIU Wei-zheng, SHI Ming-lei. Structural characteristic and engineering effect analysis of Yangtze River backswamp soft soil[J]. , 2010, 31(2): 427 -432 .
[3] YANG Lei, HE Wei-min, ZHOU Yang, ZHANG Qing-ming. Optimal design of deep-mixing pile composite foundation[J]. , 2010, 31(8): 2575 -2579 .
[4] CHI Fu-dong, WANG Jin-ting, JIN Feng, WANG Qiang. Real-time dynamic hybrid testing for soil-structure-fluid interaction analysis[J]. , 2010, 31(12): 3765 -3770 .
[5] AI Zhi-yong, CHENG Zhi-yong. Analysis of axially loaded pile in layered soils by boundary element method[J]. , 2009, 30(5): 1522 -1526 .
[6] WU Zhen-jun,GE Xiu-run. Solving vector sum factor of safety of slope by method of slices[J]. , 2009, 30(8): 2337 -2342 .
[7] XU Hai-qing , FU Zhi-feng , LIANG Li-gang , WANG Guo-bo , CHEN Liang. Ambient vibration analysis of adjacent perpendicular multi-tunnels under train loads[J]. , 2011, 32(6): 1869 -1873 .
[8] CHEN Jin-gang , XU Ping , ZHANG Yan , LI Ya-bang. Experimental research on pre-peak constitutive relation of filled fracture with expansive medium[J]. , 2011, 32(10): 2998 -3003 .
[9] LUO Yu-long, WU Qiang, ZHAN Mei-li, SHENG Jin-chang. Study of critical piping hydraulic gradient of suspended cut-off wall and sand gravel foundation under different stress states[J]. , 2012, 33(S1): 73 -78 .
[10] ZHANG Zhi-chao ,CHEN Yu-min ,LIU Han-long . Numerical analysis and evaluation of simulation of nature earthquake by millisecond blasting technique[J]. , 2013, 34(1): 265 -274 .