Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (5): 1335-1340.doi: 10.16285/j.rsm.2021.2038

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Testing and analysis of soil thermal parameters and their influencing factors

JIN Zong-chuan1, WANG Xue-qing2, 3, WU Xiao-ming1, PENG Yun2, 4   

  1. 1. School of Engineering, China University of Geosciences, Wuhan, Hubei 430071, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China; 4. College of Civil Engineering and Architecture, Guilin University of Technology, Guilin, Guangxi 541004, China
  • Received:2021-12-03 Revised:2022-03-20 Online:2022-05-11 Published:2022-05-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41772336).

Abstract: Thermal property is one of the basic physical properties of rock and soil, and it is widely used to evaluate the retention, conduction and distribution of the heat. Thermal conductivity, specific heat capacity and thermal conductivity are the most common parameters, and they are also used in geothermal energy management and development, engineering freezing excavation and construction design in cold areas. The existing studies have shown that soil thermal parameters are associate to some factors such as the soil types, source, water content, density. In this study, the thermal parameters of silty clay and clay at a construction site in Zhanjiang, Guangdong province were tested. The results show that with increasing water contents, the thermal conductivity and thermal diffusivity of silty clay increase to a maximum value and then decrease, while the specific heat capacity increases linearly. The effect of dry density on thermal conductivity of silty clay depends on the moisture. When the water content is less than 20.0%, the thermal conductivity increases with the increase of dry density, while the water content is over 27.5%, it decreases with the increase of dry density. At the water content of about 24.5% (liquid limit), there is no law to follow. The effect of dry density on thermal diffusivity of silty clay is not obvious. Both the thermal conductivity and specific heat capacity of clay increase with the increase of water content and dry density. As the water content increases, the thermal diffusivity increases nonlinearly until it is stable. Under a low water content, the dry density does not significantly affect the thermal diffusivity; however the thermal diffusivity increases firstly and then decreases with increasing dry densities under the high water content. In addition, it is also found that the existence of large particles can cause the thermal conductivity of silty clay to be more complicated than that of clay.

Key words: thermal conductivity, volume specific heat capacity, thermal diffusivity, moisture content, dry density

CLC Number: 

  • TU 411
[1] ZHENG Wen-hong, SHI Tian-wei, PAN Yi-shan, LUO Hao, LÜ Xiang-feng, . Effects of water content on the charge induced signal of rock [J]. Rock and Soil Mechanics, 2022, 43(3): 659-668.
[2] ZHAO Zhi-qiang, DAI Fu-chu, MIN Hong, TAN Ye, . Research on infiltration process in undisturbed loess-paleosol sequence [J]. Rock and Soil Mechanics, 2021, 42(9): 2611-2621.
[3] HU Yun-shi, XU Yun-shan, SUN De-an, CHEN Bo, ZENG Zhao-tian, . Temperature dependence of thermal conductivity of granular bentonites [J]. Rock and Soil Mechanics, 2021, 42(7): 1774-1782.
[4] LIU Yue, CHEN Dong-xia, WANG Hui, YU Jia-jing, . Response analysis of residual soil slope considering crack development under drying-wetting cycles [J]. Rock and Soil Mechanics, 2021, 42(7): 1933-1943.
[5] ZHANG Chuang, REN Song, ZHANG Ping, LONG Neng-zeng, . Experimental study on Brazilian splitting of phyllite under the coupling effects of water, pore and bedding [J]. Rock and Soil Mechanics, 2021, 42(6): 1612-1624.
[6] ZHAO Kui, RAN Shan-hu, ZENG Peng, YANG Dao-xue, TENG Tian-ye. Effect of moisture content on characteristic stress and acoustic emission characteristics of red sandstone [J]. Rock and Soil Mechanics, 2021, 42(4): 899-908.
[7] LEI Xue-wen, DING Hao, WANG Xin-zhi, SHEN Jian-hua, MENG Qing-shan, . Experimental study of consolidation properties of calcareous silt [J]. Rock and Soil Mechanics, 2021, 42(4): 909-920.
[8] LI Bo-bo, WANG Zhong-hui, REN Chong-hong, ZHANG Yao, XU Jiang, LI Jian-hua, . Mechanical properties and damage constitutive model of coal under the coupled hydro-mechanical effect [J]. Rock and Soil Mechanics, 2021, 42(2): 315-323.
[9] ZHANG Hu-yuan, ZHAO Bing-zheng, TONG Yan-mei, . Thermal conductivity and uniformity of hybrid buffer blocks [J]. Rock and Soil Mechanics, 2020, 41(S1): 1-8.
[10] JIANG Jing-shan, ZUO Yong-zhen, CHENG Zhan-lin, PAN Jia-jun, . Investigation of strength properties of coarse granular material at different densities using large-scale true triaxial tests [J]. Rock and Soil Mechanics, 2020, 41(8): 2601-2608.
[11] YANG Kai-xuan, HOU Tian-shun. Influence of compaction test types on compaction characteristics of EPS particles light weight soil [J]. Rock and Soil Mechanics, 2020, 41(6): 1971-1982.
[12] CHU Fu-yong, ZHU Jun-gao, WENG Hou-yang, YE Yang-fan. Experimental study on maximum dry density of scaled coarse-grained soil [J]. Rock and Soil Mechanics, 2020, 41(5): 1599-1604.
[13] HU Tian-fei, WANG Tian-liang, CHANG Jian, LIU Jian-yong, LU Yu-ting, . Code development and verification for coupled process of water migration and heat transfer of frozen soil based on finite volume method [J]. Rock and Soil Mechanics, 2020, 41(5): 1781-1789.
[14] DAO Minh-huan, LIU Qing-bing, HUANG Wei, XIANG Wei, WANG Zhen-hua, . Study on desiccation –shrinkage characteristic and shrinkage cracking mechanism of bentonite and sand mixtures [J]. Rock and Soil Mechanics, 2020, 41(3): 789-798.
[15] XU Yun-shan, SUN De-an, ZENG Zhao-tian, LÜ Hai-bo, . Temperature effect on thermal conductivity of bentonites [J]. Rock and Soil Mechanics, 2020, 41(1): 39-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .