Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (1): 184-196.doi: 10.16285/j.rsm.2023.0048

• Rock and Soil Mechanics Excellence Forum • Previous Articles     Next Articles

Theoretical study on consolidation of composite foundation with composite piles considering spatiotemporal effect of stress under bidirectional seepage

ZHANG Yu-guo, YANG Wen-bing, ZHAO Ya-chun, WANG Chuang, ZHAO Ya-min   

  1. Institute of Civil Engineering, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
  • Received:2023-01-13 Accepted:2023-02-27 Online:2024-01-10 Published:2024-01-17
  • Supported by:
    This work was supported by the Natural Science Foundation of China (U1204511, 51509274), the Key Scientific Research Projects of Colleges and Universities in Henan Province (19A560027) and the Natural Science Foundation of Henan Province (222300420596).

Abstract: The composite foundation with combined stone columns and impervious piles can not only improve the bearing capacity of the foundation, but also accelerate the consolidation of soil, which has a strong application value in treating saturated soft clay foundation. Based on the calculation model of axisymmetric consolidation with bidirectional seepage, a consolidation differential equation of composite foundation reinforced by stone columns and impervious piles is established by considering the volume compression of central and peripheral stone columns and the disturbance effect of piles construction. The analytical solution of the combined composite foundation consolidation under the variation of additional stress with time and depth is derived by using the analytical method, including the solutions of average excess pore water pressure of stone columns and soil and the average consolidation degree of composite foundation. The correctness of the solution is verified by degradation study and comparison with existing solutions. Finally, a smaller additional stress at the bottom of the composite foundation, or a denser distribution of stone columns and impervious piles, will lead to a faster consolidation of the combined composite foundation. The disturbance effect of stone columns construction on composite foundation is greater than that of impervious piles. Ignoring the effect of the volume compression of stone columns will overestimate the consolidation rate of composite foundation; the smaller the radius ratio is, the larger the error will be. A good agreement can be observed between the predicted consolidation degree by the theoretical solution and the measured one.

Key words: composite foundation, bidirectional seepage, volume compression, additional stress, analytical solution

CLC Number: 

  • TU470
[1] LIU Jing-jin, LUO Xue-si, LEI Hua-yang, ZHENG Gang, LUO Hao-peng, . Analytical solution of consolidation by air-boosted vacuum preloading under equal strain condition [J]. Rock and Soil Mechanics, 2024, 45(3): 809-821.
[2] HAN Bo-lin, LU Meng-meng. Theoretical study of consolidation of composite ground with permeable concrete piles considering pile penetration deformation [J]. Rock and Soil Mechanics, 2023, 44(8): 2360-2368.
[3] YU Jun, LI Dong-kai, HE Zhen, ZHANG Zhi-zhong. Analytical solution of anisotropic seepage in dam foundation with anti-seepage walls at both ends [J]. Rock and Soil Mechanics, 2023, 44(8): 2381-2388.
[4] CUI Yu-yu, WU Li-peng, SHEN Xing-hua, WANG Xing-zhao, QIN Ya-qiong, LIU Jie, LU Zheng, WU Lei, . A simplified calculation method for upheaval deformation induced by unloading of silty clay foundation pit [J]. Rock and Soil Mechanics, 2023, 44(5): 1425-1434.
[5] HUANG Juan, HE Zhen, YU Jun, YANG Xin-xin. Analytical solution for steady seepage around circular cofferdam in soil layer with anisotropic permeability [J]. Rock and Soil Mechanics, 2023, 44(4): 1035-1043.
[6] MA Shu-wen, LU Liang, WANG Zong-jian, WANG Jing-tian, LI Lan-xing, . Deformation and load transmission mechanism of prestressed reinforced embankment subjected to rockfall impacts [J]. Rock and Soil Mechanics, 2023, 44(3): 799-809.
[7] ZHENG Chang-jie, CUI Yi-qin, WU Chen, LUO Tong, LUAN Lu-bao, . Simplified analytical solution for horizontal seismic response of single piles to vertically incident S waves [J]. Rock and Soil Mechanics, 2023, 44(2): 327-336.
[8] YU Jun, ZHANG Zhi-zhong, ZHENG Jing-fan, HE Zhen. Analytical solution of pore pressure in seepage field of foundation pit with a sealed bottom under water level fluctuation [J]. Rock and Soil Mechanics, 2023, 44(12): 3415-3423.
[9] YU Jun, ZHANG Yang, ZHENG Jing-fan, ZHANG Zhi-zhong. Analytical solution of two-dimensional steady-state seepage field in a pit considering a phreatic surface [J]. Rock and Soil Mechanics, 2023, 44(11): 3109-3116.
[10] LI Jiong, LI Ming-guang, ZHAN Hong-bing, CHEN Jin-jian, XIA Xiao-he, ZHANG Shuo. Semi-analytical solutions for groundwater flow dynamics in confined aquifers under constant-rate injection considering clogging of aquifers around well [J]. Rock and Soil Mechanics, 2023, 44(10): 2871-2878.
[11] ZHU Sai-nan, CHEN Yan-hua, WANG Ning, LI Wei-hua, ZHANG Wei-wei. Analytical solution of imperfect contact effect at the interface between undersea tunnel and seabed soil under plane P1 waves incidence [J]. Rock and Soil Mechanics, 2023, 44(10): 3049-3058.
[12] SHI Lan-tian, LI Chuan-xun, YANG Yang. Analytical solution for consolidation of soft soils with vertical drains by considering variable well resistance with time and depth and time-dependent loading [J]. Rock and Soil Mechanics, 2023, 44(1): 183-192.
[13] HAN Jia-ming, DONG Zhao, SU San-qing, MA Xin, LI Guan-bing, . Analytical solution of rainfall infiltration in homogeneous unsaturated slope and its application in loess slope [J]. Rock and Soil Mechanics, 2023, 44(1): 241-250.
[14] QIN Ai-fang, MENG Hong-ping, JIANG Liang-hua. Analysis of axisymmetric consolidation characteristics of unsaturated soils under surcharge loading and electro-osmosis [J]. Rock and Soil Mechanics, 2022, 43(S1): 97-106.
[15] WANG Lei, ZHANG Li-ting, SHEN Si-dong, XU Yong-fu, XIA Xiao-he, . Axisymmetric consolidation characteristics for unsaturated soils under piece-wise cyclic load [J]. Rock and Soil Mechanics, 2022, 43(S1): 203-212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[5] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[6] HUANG Run-qiu, XU De-min. Volume change method for testing rock or rock mass permeability[J]. , 2009, 30(10): 2961 -2964 .
[7] LU Zheng, YAO Hai-lin, LUO Xing-wen, HU Meng-ling. 3D dynamic responses of layered ground under vehicle loads[J]. , 2009, 30(10): 2965 -2970 .
[8] CHEN Zhen, TAO Long-guang, LI Tao, LI Hai-bin, WANG Zong-yong. A new method for settlement computation of box foundation with supporting structure[J]. , 2009, 30(10): 2978 -2984 .
[9] WANG Shu-yun, LU Xiao-bing, ZHAO Jing, WANG Ai-lan. Post-cyclic loading undrained strength degradation characteristics of silty clay[J]. , 2009, 30(10): 2991 -2995 .
[10] RONG Guan, WANG Si-jing, WANG En-zhi, LIU Sun-gui. Study of evolutional simulation of Baihetan river valley and evaluation of engineering quality of jointed basalt P2β3[J]. , 2009, 30(10): 3013 -3019 .