CO2-H2O treatment,shale,tensile failure,bedding,digital image correlation ," /> CO2-H2O treatment,shale,tensile failure,bedding,digital image correlation ,"/> Effect of microscopic damage on tensile failure of laminated shale after CO<sub>2</sub>-H<sub>2</sub>O treatment

Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (1): 59-67.doi: 10.16285/j.rsm.2023.0106

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effect of microscopic damage on tensile failure of laminated shale after CO2-H2O treatment

DU Bu-ge1, ZHANG Guang-qing1, 2, ZHOU Da-wei1, QU Le3, QIU Ren-yi1, FAN Zong-yang1   

  1. 1. College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China; 2. State Key Laboratory of Petroleum and Prospecting, China University of Petroleum, Beijing 102249, China 3. Xi’an Key Laboratory of Tight Oil (Shale Oil) Development, Xi'an Shiyou University, Xi’an, Shaanxi 710065, China
  • Received:2023-02-02 Accepted:2023-03-16 Online:2024-01-10 Published:2024-01-10
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51925405, 52104050, 52004223).

Abstract:

CO2-H2O can damage the rock microstructure and change the tensile failure characteristics and fracture propagation mode during CO2 fracturing in shale reservoirs. X-ray diffraction (XRD) tests, scanning electron microscope (SEM) observation, and Brazilian tests are conducted to investigate the microscopic damage and failure characteristics, and fracture propagation mode of Longmaxi and Chang-7 shale specimens after CO2-H2O treatment. The results show that the microscopic damage of bedding after CO2-H2O treatment is more significant than that of the matrix. The volume of bedding clay minerals is reduced due to dehydration, the organic matter is extracted and contracted, and the large-size microfractures (10−30 μm in length and 1−5 μm in width) are generated in the laminae distributed along the bedding. Carbonate and feldspar minerals in the matrix are dissolved and induce randomly distributed small-size microcracks (< 1 μm in length and < 0.5 μm in width). After CO2-H2O treatment, the tensile strength of shale decreases, and the anisotropy increases. The failure mode of shale changes from tensile failure to mixed tension-shear failure, and the shear action of specimens loaded vertically to the bedding is stronger. Fracture propagation is restricted by the bedding for specimens loaded vertically to the bedding, leading to fracture propagation along the bedding; for specimens loaded horizontally to the bedding, the bedding exerts stronger constraints on fracture propagation, resulting in fracture propagation merely within the bedding.


Key words: CO2-H2O treatment, shale, tensile failure, bedding, digital image correlation

CLC Number: 

  • TU 452
[1] FAN Hao, WANG Lei, WANG Lian-guo, . Experimental study on mechanical properties of bedding coal under different stress paths [J]. Rock and Soil Mechanics, 2024, 45(2): 385-395.
[2] LI Ying-jie, ZHANG Liang, WANG Bing-qian, LIU Sheng-xin. Anisotropic three-dimensional deformation field characteristics of shale based on CT scanning and digital volume correlation method [J]. Rock and Soil Mechanics, 2023, 44(S1): 134-144.
[3] PENG Yang, GAO Yong-tao, WANG Wen-lin, FUER Kate, WEN Jian-min, ZHOU Yu, . Fracture mechanism of coal-rock combination under unilateral confinement compression [J]. Rock and Soil Mechanics, 2023, 44(S1): 387-398.
[4] GAO Zhi-ao, KONG Ling-wei, WANG Shuang-jiao, LIU Bing-heng, LU Jian-feng, . Deformation behavior and shear zone evolution characteristics of undisturbed expansive soil with different fissure directions under plane strain condition [J]. Rock and Soil Mechanics, 2023, 44(9): 2495-2508.
[5] WANG Zhi-ying, GUO Ming-zhu, ZENG Jin-yan, WANG Chen, LIU Huang. Experimental study on dynamic response of bedding rock slope with weak interlayer under earthquake [J]. Rock and Soil Mechanics, 2023, 44(9): 2566-2578.
[6] LU Qin-wu, GUAN Zhen-chang, LIN Lin, WU Shu-jing, SONG De-jie. Lining- stratum interaction mechanism of mountain tunnel based on static pushover model test [J]. Rock and Soil Mechanics, 2023, 44(8): 2318-2326.
[7] WANG Lei, ZHANG Shuai, LIU Huai-qian, CHEN Li-peng, ZHU Chuan-qi, LI Shao-bo, WANG An-cheng. Research on energy dissipation and damage failure law of gas-bearing coal under impact loading [J]. Rock and Soil Mechanics, 2023, 44(7): 1901-1915.
[8] XU Ming, YU Xiao-yue, ZHAO Yuan-ping, HU Jia-ju, ZHANG Xiao-ting. Analysis of seismic dynamic response and failure mode of bedding rock slope with laminated fractured structure [J]. Rock and Soil Mechanics, 2023, 44(2): 362-372.
[9] YANG Huan-qiang, LIU Yang, ZHANG Qing-qing, XIONG Dong, . Calculation method for geometric parameters of hydraulic fracture considering shear slip of shale bedding [J]. Rock and Soil Mechanics, 2023, 44(2): 461-472.
[10] XIN Chun-lei, YANG Fei, FENG Wen-kai, LI Wen-hui, LIAO Jun. Shattering failure mechanism of step-like bedding rock slope under multi-stage earthquake excitations [J]. Rock and Soil Mechanics, 2023, 44(12): 3481-3494.
[11] LI Guo-xiao, WANG Hang-long, PENG Jun, WANG Lin-fei, DAI Bi-bo, . Strength model of anisotropic rocks based on Hoek-Brown criterion [J]. Rock and Soil Mechanics, 2023, 44(12): 3541-3550.
[12] CHEN Lei , ZHANG Guang-qing, ZHANG Min, CAO Yu-jie , SHEN Li-ji, . Propagation process of hydraulic fracture crossing an orthogonal discontinuity [J]. Rock and Soil Mechanics, 2023, 44(1): 159-170.
[13] ZHANG Dong-xiao, GUO Wei-yao, ZHAO Tong-bin, GU Xue-bin, CHEN Le-xin, . Experimental study on directional propagation of rock type-Ⅰ crack [J]. Rock and Soil Mechanics, 2022, 43(S2): 231-244.
[14] ZHOU Pei-yao, PAN Li-yan, CHEN Hua-sheng, WANG Bin, ZOU Zhi-kun, ZHANG Min, . Experimental study on controlling factors of vertical propagation of thin interbedded hydraulic fractures [J]. Rock and Soil Mechanics, 2022, 43(S2): 299-306.
[15] CEN Duo-feng, LIU Chang, HUANG Da. Tensile-shear mechanical property of limestone bedding planes and effect of bedding plane undulation [J]. Rock and Soil Mechanics, 2022, 43(S1): 77-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[2] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[3] HUANG Run-qiu, XU De-min. Volume change method for testing rock or rock mass permeability[J]. , 2009, 30(10): 2961 -2964 .
[4] WANG Shu-yun, LU Xiao-bing, ZHAO Jing, WANG Ai-lan. Post-cyclic loading undrained strength degradation characteristics of silty clay[J]. , 2009, 30(10): 2991 -2995 .
[5] HUANG Ping-lu, CHEN Cong-xin, XIAO Guo-feng, LIN Jian. Study of rock movement caused by underground mining in mines with complicated geological conditions[J]. , 2009, 30(10): 3020 -3024 .
[6] CHEN Zhong-xue, WANG Ren, HU Ming-jian, WEI Hou-zhen, WANG Xin-zhi. Study of internal factors for debris flow occurrence in Jianjia Ravine, Dongchun of Yunnan[J]. , 2009, 30(10): 3053 -3056 .
[7] LENG Wu-ming, YANG Qi, LIU Qing-tan, NIE Ru-song. Study of new method for calcutating response of piled bridge abutment in soft ground[J]. , 2009, 30(10): 3079 -3085 .
[8] WU Liang, ZHONG Dong-wang, LU Wen-bo. Study of concrete damage under blast loading of air-decking[J]. , 2009, 30(10): 3109 -3114 .
[9] ZHAO Ming-hua, LIU Xiao-ping, HUANG Li-kui. Study of characteristics of seepage of roadbed’s fissures[J]. , 2009, 30(10): 3122 -3126 .
[10] ZHOU Xiao-jie, JIE Yu-xin, LI Guang-xin. Numerical simulation of piping based on coupling seepage and pipe flow[J]. , 2009, 30(10): 3154 -3158 .