Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (2): 511-524.doi: 10.16285/j.rsm.2023.0217

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Compressive bearing capacity and load transfer mechanism of stiffened deep cement mixing pile installed in silt

WEN Lei1, 2, LIU Zhong1, 2, MA Xiao-hua1, 2, ZHANG Zhen3   

  1. 1. Zhejiang Kunde Innovate Geotechnical Engineering Co., Ltd., Ningbo, Zhejiang 315100, China; 2. Kunde Research Institute of Intelligent Geotechnical Technology, Ningbo, Zhejiang 315100, China; 3. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
  • Received:2023-02-22 Accepted:2023-04-03 Online:2024-02-11 Published:2024-02-07

Abstract: Stiffened deep cement mixing (SDCM) pile are gaining popularity in civil and architectural engineering due to their combination of core pile advantages, such as high axial load transfer ability, and deep mixing column advantages, such as high side friction. SDCM piles offer high construction efficiency, high bearing capacity, and lower costs. However, the existing calculation methods for determining their bearing capacity often differ significantly from actual test results due to a lack of unified understanding regarding their load transfer mechanism. To address this, full-scale field tests of SDCM piles embedded in silt were conducted to study the compressive bearing characteristics and load transfer mechanism. Ordinary cement and gypsum-slag soil hardening agent were both used as the binder materials in SDCM pile. The pile load-displacement curves were measured, and the ultimate bearing capacity of a single SDCM pile under compression was analyzed. The influence of binder materials was also checked. Coring tests were conducted to obtain its unconfined compressive strength (UCS). The discreteness of UCS between the field mixing cemented soil and the laboratory test were also analyzed. A three-dimensional elastoplastic finite element numerical model considering the interfaces of core pile-cemented soil and cemented soil-in-situ soils was established. The distribution of axial force along pile shaft and the shear stress between contact surfaces under different loads applied to the pile head were explored. The load transfer mechanism was analyzed and the higher bearing capacity compared with bored piles were discussed. The results show that the ultimate compressive bearing capacity of the SDCM pile in silt is larger than 1.5 times the sum of the compressive bearing capacity of the pure deep mixing pile and the single core pile. As the end resistance takes effect and increases, the shear deformation between the core pile and the cemented soil at the pile tip will increase rapidly due to the axial compression of the cemented soil. Thus, this position is prone to shear failure. Compared with traditional bored piles, the improvement of the bearing capacity the SDCM pile is mainly due to the interface improvement caused by solidification.

Key words: stiffened deep cement mixing pile, silt, compressive bearing capacity, field test, numerical simulation

CLC Number: 

  • TU 47
[1] LIU Xin-rong, WANG Hao, GUO Xue-yan, LUO Xin-yang, ZHOU Xiao-han, XU Bin, . Stability of typical perilous rock bank slope considering the influence of deterioration of rock mass in fluctuation belt [J]. Rock and Soil Mechanics, 2024, 45(2): 563-576.
[2] ZHU Yin-bin, LI Chang-dong, ZHOU Jia-qing, XIANG Lin-yu, JIANG Xi-hui, ZHU Wen-yu, . Influence of permeable matrix on non-Darcian flow in single rough-walled fracture [J]. Rock and Soil Mechanics, 2024, 45(2): 601-611.
[3] HUA Tao, SHEN Lin-fang, WANG Zhi-liang, LI Ze, XU Ze-min. Numerical simulation of rock hydraulic fracturing based on peridynamics and quantitative analysis of fracture network [J]. Rock and Soil Mechanics, 2024, 45(2): 612-622.
[4] ZHANG Feng, TANG Kang-wei, YIN Si-qi, FENG De-cheng, CHEN Zhi-guo, . Shear wave velocity and dynamic resilient modulus of frozen and thawed silty clay and their conversion relationship [J]. Rock and Soil Mechanics, 2023, 44(S1): 221-233.
[5] WANG Kuan-jun, SHEN Kan-min, WANG Ming-yuan, WANG Hong-yu, GUO Zhen, . Strength interpretation parameter of piezoncone penetration test for soft clay in offshore area of Hangzhou Bay [J]. Rock and Soil Mechanics, 2023, 44(S1): 521-532.
[6] HUANG Sheng-gen, ZHANG Yi, HUO Hao, CHENG Chang-qing. Study on deformation law of lattice columns in deep foundation pits in soft soil area [J]. Rock and Soil Mechanics, 2023, 44(S1): 533-538.
[7] WANG Kai, FU Qiang, XU Chao, AI Zi-bo, LI Dan, WANG Lei, SHU Long-yong, . Numerical simulation of interface mechanical effects of primary coal-rock combination [J]. Rock and Soil Mechanics, 2023, 44(S1): 623-633.
[8] QIAO Ya-fei, , YAN Kai, , ZHAO Teng-teng, DING Wen-qi, . Characteristics and mechanism of soil heave at the bottom of ultra-deep circular shafts in soft soil areas [J]. Rock and Soil Mechanics, 2023, 44(9): 2707-2716.
[9] ZHANG Kun-yong, ZHANG Meng, SUN Bin, LI Fu-dong, JIAN Yong-zhou, . A calculation method for deformation of diaphragm wall of narrow deep foundation pit in soft soil considering spatio-temporal effect [J]. Rock and Soil Mechanics, 2023, 44(8): 2389-2399.
[10] ZHOU En-quan, YAO Yuan, CUI Lei, WANG Long, . Shear strength characteristics of unsaturated rubber silt mixtures [J]. Rock and Soil Mechanics, 2023, 44(7): 1949-1958.
[11] YIN Xin-sheng, SHU Ying, LIANG Lu-ju, ZHANG Shi-min, . Stability analysis of shield excavation surface in saturated silt strata considering seepage [J]. Rock and Soil Mechanics, 2023, 44(7): 2005-2016.
[12] JI Yu-kun, WANG Qin-ke, ZHAO Guo-liang, ZHANG Jian, MA Jian-lin, . Model test and numerical simulation of vertical bearing capacity and deformation characteristics of rock-socketed uplift pile in sloped ground [J]. Rock and Soil Mechanics, 2023, 44(6): 1604-1614.
[13] SUN Yan-xiao, LIU Song-yu, TONG Li-yuan, WANG Jun, CUI Jia, LI Shi-long, LI Min, . Optimization of confined aquifer dewatering for cut and cover tunnel in Yangtze River floodplain [J]. Rock and Soil Mechanics, 2023, 44(6): 1800-1810.
[14] JIA Ke-min, XU Cheng-shun, DU Xiu-li, ZHANG Xiao-ling, SONG Ji, SU Zhuo-lin, . Mechanism of liquefaction-induced lateral spreading in liquefiable inclined sites [J]. Rock and Soil Mechanics, 2023, 44(6): 1837-1848.
[15] CHEN Hui-yun, FENG Zhong-ju, BAI Shao-fen, DONG Jian-song, XIA Cheng-ming, CAI Jie, . Experimental study on load transfer mechanism of bridge pile foundation passing through karst cave [J]. Rock and Soil Mechanics, 2023, 44(5): 1405-1415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .