Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (8): 2389-2399.doi: 10.16285/j.rsm.2022.1114

• Geotechnical Engineering • Previous Articles     Next Articles

A calculation method for deformation of diaphragm wall of narrow deep foundation pit in soft soil considering spatio-temporal effect

ZHANG Kun-yong1, 2, ZHANG Meng2, SUN Bin3, LI Fu-dong4, JIAN Yong-zhou4   

  1. 1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210024, China; 2. Geotechnical Research Institute, Hohai University, Nanjing, Jiangsu 210024, China; 3. Jiangsu Zhongshe Group Co. Ltd., Wuxi, Jiangsu 214072, China; 4. China Communications Construction Co., Ltd-Second Highway Bureau Fourth Engineering Co., Ltd., Luoyang, Henan 471000, China
  • Received:2022-07-18 Accepted:2023-03-14 Online:2023-08-21 Published:2023-08-21
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41530637).

Abstract: To accurately evaluate the safety of foundation pit construction in soft soil area and its impact on the surroundings, the time and space influencing factors during excavation cannot be ignored. In this paper, based on the excavation of a deep foundation pit in the soft soil area of the Yangtze River floodplain, a 3D finite element model was established considering the combination of bottom-up and top-down constructions, and the calculated values of horizontal displacement of the diaphragm wall were compared with the measured values to verify the reliability of the finite element calculation. Based on theoretical analysis, numerical calculation and measured data, the influence coefficient of corner effect and equivalent horizontal resistance coefficient were used to measure the influence of spatio-temporal effect on the deformation of supporting wall, and the calculation method of the diaphragm wall deformation considering spatio-temporal effect was proposed. The necessity of the spatio-temporal effect and the rationality of the proposed method in the design of foundation pit in soft soil area were verified by engineering examples. The results can provide beneficial reference for the calculation of deep foundation pit deformation in soft soil area.

Key words: foundation pit excavation, numerical simulation, spatio-temporal effect, supporting structure deformation calculation

CLC Number: 

  • TU 473
[1] QIAO Ya-fei, , YAN Kai, , ZHAO Teng-teng, DING Wen-qi, . Characteristics and mechanism of soil heave at the bottom of ultra-deep circular shafts in soft soil areas [J]. Rock and Soil Mechanics, 2023, 44(9): 2707-2716.
[2] YIN Xin-sheng, SHU Ying, LIANG Lu-ju, ZHANG Shi-min, . Stability analysis of shield excavation surface in saturated silt strata considering seepage [J]. Rock and Soil Mechanics, 2023, 44(7): 2005-2016.
[3] JI Yu-kun, WANG Qin-ke, ZHAO Guo-liang, ZHANG Jian, MA Jian-lin, . Model test and numerical simulation of vertical bearing capacity and deformation characteristics of rock-socketed uplift pile in sloped ground [J]. Rock and Soil Mechanics, 2023, 44(6): 1604-1614.
[4] SUN Yan-xiao, LIU Song-yu, TONG Li-yuan, WANG Jun, CUI Jia, LI Shi-long, LI Min, . Optimization of confined aquifer dewatering for cut and cover tunnel in Yangtze River floodplain [J]. Rock and Soil Mechanics, 2023, 44(6): 1800-1810.
[5] JIA Ke-min, XU Cheng-shun, DU Xiu-li, ZHANG Xiao-ling, SONG Ji, SU Zhuo-lin, . Mechanism of liquefaction-induced lateral spreading in liquefiable inclined sites [J]. Rock and Soil Mechanics, 2023, 44(6): 1837-1848.
[6] WANG Chun, HU Man-gu, WANG Cheng, . Dynamic damage characteristics and structural model of concentric perforated granite subjected to thermal-hydro-mechanical coupling [J]. Rock and Soil Mechanics, 2023, 44(3): 741-756.
[7] WANG Rui-song, GUO Cheng-chao, LIN Pei-yuan, WANG Fu-ming, . Excavation response analysis of prefabricated recyclable support structure for water-rich silt foundation pit [J]. Rock and Soil Mechanics, 2023, 44(3): 843-853.
[8] WANG Qing-yu, TENG Ji-dong, ZHONG Yu, ZHANG Sheng, SHENG Dai-chao, . Mesoscale simulation of pore ice formation in saturated frozen soil by using lattice Boltzmann method [J]. Rock and Soil Mechanics, 2023, 44(1): 317-326.
[9] JIANG Fan, LIU Hua, YUE Qing, YANG Wen-shuang. Variation trend of soil pressure under cutting edges of the super large caisson during sinking stage [J]. Rock and Soil Mechanics, 2022, 43(S2): 431-442.
[10] ZHOU Hao, CHEN Guo-liang, HE Xiang, WU Jia-ming, ZHANG Rong-tang, YIN Da-wei, YUAN Kun-bin, WU Zhe, . Key technologies of building information model integration and simulation in geotechnical engineering [J]. Rock and Soil Mechanics, 2022, 43(S2): 443-453.
[11] DENG Peng-hai, LIU Quan-sheng, HUANG Xing, PAN Yu-cong, BO Yin, . Combined finite-discrete element numerical study on the buckling failure mechanism of horizontally layered soft rock mass [J]. Rock and Soil Mechanics, 2022, 43(S2): 508-523.
[12] LUO Guan-yong, ZHONG Miao, CAO Hong, PAN Hong, . Measured data and numerical simulation analysis of shield tunneling in sand [J]. Rock and Soil Mechanics, 2022, 43(S2): 563-574.
[13] YUAN Wei, ZHONG Hui-ya, ZHU Yi, TANG Jia, HONG Jian-fei, WANG Ya-xiong, LIN Hang, WAN Ning, WANG An-li, . Determination method of slope critical failure state based on monitoring data fusion [J]. Rock and Soil Mechanics, 2022, 43(S2): 575-587.
[14] DING Yang, XIONG Ye, CHEN Zi-zi, WU Xiao-han, WANG Xiao-bo, . Field test and numerical simulation for dynamic characteristics of cast-in-place pile [J]. Rock and Soil Mechanics, 2022, 43(S2): 640-646.
[15] RUAN Bin, JI Han-wen, WANG Su-yang, HE Hong-jun, MIAO Yu. Seismic incident wave separation method based on array observation and numerical verification [J]. Rock and Soil Mechanics, 2022, 43(9): 2615-2623.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[3] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[4] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[5] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[6] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[7] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[8] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[9] LU Zheng, YAO Hai-lin, LUO Xing-wen, HU Meng-ling. 3D dynamic responses of layered ground under vehicle loads[J]. , 2009, 30(10): 2965 -2970 .
[10] SUN Yong. Research on calculation method of double-row anti-sliding structure under sliding surface[J]. , 2009, 30(10): 2971 -2977 .