Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (2): 588-600.doi: 10.16285/j.rsm.2023.0230

• Numerical Analysis • Previous Articles     Next Articles

Investigation on freeze-thaw damage mechanism of porous rock with discrete element method

JIA Chao-jun1, PANG Rui-feng1, YU Jun2, LEI Ming-feng1, LI Zhong3   

  1. 1. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China; 2. School of Transportation and Civil Engineering, Nantong University, Nantong, Jiangsu 226019, China; 3. Hunan Tieyuan Civil Engineering Testing Co., Ltd., Changsha, Hunan 410075, China
  • Received:2023-02-24 Accepted:2023-06-07 Online:2024-02-11 Published:2024-02-07
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52008403).

Abstract: The study of the degradation mechanism of freeze-thaw damaged rock holds significant theoretical importance in understanding freeze-thaw disasters, predicting disasters, and designing tunnel protection systems in cold regions. Based on the volume expansion theory, this research establishes a correlation between irreversible volume increase and the number of freeze-thaw cycles, and also deduces the law of radial heat transfer for cylindrical samples during freeze-thaw cycles. Considering the freeze-thaw damage process of saturated samples, a model of rock freeze-thaw damage based on discrete elements is developed. The physical and mechanical properties of sandstone with different freeze-thaw cycles are tested to validate the model, using stress-strain curves and uniaxial compressive strength. Building upon this, the growth and distribution of cracks in rock samples during freeze-thaw cycles are analyzed, and the crack growth process under coupled freeze-thaw-stress conditions is studied. The research findings indicate that as the number of freeze-thaw cycles increases, the development of cracks undergoes three stages: slow, fast, and then steady. The number of cracks increases radially from the inside to the outside of the sample. Approximately 80% of the frost heave cracks are distributed in the circular column area 10–25 mm away from the sample’s axis. When the number of freeze-thaw cycles is less than 80, the increase in the number of cracks follows an exponential function relationship. However, when the number of freeze-thaw cycles exceeds 80, the number of cracks increase logarithmically with their distance from the center of the circle. During the freeze-thaw cycle, the damage in the sample primarily occurs through tensile failure, and the freeze-thaw damage process of the rock is influenced by the initial pore structure.

Key words: freeze-thaw damage, discrete element method, volume expansion, heat conduction, cracks

CLC Number: 

  • TU 457
[1] MAO Jia, YU Jian-kun, SHAO Lin-yu, ZHAO Lan-hao. Discrete element method based on three dimensional deformable spheropolyhedra [J]. Rock and Soil Mechanics, 2024, 45(3): 908-916.
[2] WANG Zhen, ZHU Zhen-de, HU Jia-hao, ZHOU Zi-yu, . Experimental study on segregating ice cracks distribution characteristics in unidirectional frozen silty clay [J]. Rock and Soil Mechanics, 2024, 45(2): 407-416.
[3] YANG Yang, WANG Le, MA Jian-hua, TONG Chen-xi, ZHANG Chun-hui, WANG Zhi-chao, TIAN Ying-hui, . Mechanism of submarine pipeline penetration into calcareous sand considering particle breakage effect [J]. Rock and Soil Mechanics, 2024, 45(2): 623-632.
[4] AN Ran, CHEN Xin, ZHANG Xian-wei, WANG Gang, GAO Hao-dong , . Dynamic evolution characteristics of microscopic cracks in steel slag- stabilized soil under uniaxial loading [J]. Rock and Soil Mechanics, 2023, 44(S1): 300-308.
[5] LIANG Jin-ping, JING Hao-yong, HOU Gong-yu, LI Xiao-rui, ZHANG Ming-lei, . Meso-damage and mechanical characteristics of surrounding rock under unloading condition [J]. Rock and Soil Mechanics, 2023, 44(S1): 399-409.
[6] HE Tao, , MAO Hai-tao, , ZHANG Chao, GU Yi. Evolution of perforated cracks in cohesive soil under muddy water seepage [J]. Rock and Soil Mechanics, 2023, 44(9): 2628-2638.
[7] LIU Jia-ying, XU Zhi-chao , WEI Gang, HU Cheng-bao, SUN Miao-miao , WANG Yu-ting. Complex network analysis of force chain structure for granular materials under loading and unloading conditions [J]. Rock and Soil Mechanics, 2023, 44(9): 2767-2778.
[8] LUO Zuo-sen, ZHU Zuo-xiang, SU Qing, LI Jian-lin, DENG Hua-feng, YANG Chao, . Creep simulation and deterioration mechanism of sandstone under water-rock interaction based on parallel bond model [J]. Rock and Soil Mechanics, 2023, 44(8): 2445-2457.
[9] DU Wei, NIE Ru-song, LI Lie-lie, TAN Yong-chang, ZHANG Jie, QI Yan-lu, . Discrete element simulation on aeolian sand-geogrid pull-out test with different boundary conditions [J]. Rock and Soil Mechanics, 2023, 44(6): 1849-1862.
[10] DENG Peng-hai, LIU Quan-sheng, HUANG Xing, . Progressive fracture and swelling deformation of tunnel floor: a new floor heave mechanism [J]. Rock and Soil Mechanics, 2023, 44(5): 1512-1529.
[11] YANG Yang, TIAN Ying-hui, ZHANG Chun-hui, WANG Rong, WANG Zhi-chao, WANG Le, . Penetration resistance evolution characteristics and mesoscopic mechanism of submarine pipeline in sandy seabed [J]. Rock and Soil Mechanics, 2023, 44(4): 1001-1008.
[12] GAO Hao-dong, AN Ran, KONG Ling-wei, ZHANG Xian-wei, LEI Xue-wen, . Evolution characteristics of meso-cracks in expansive soil under desiccating conditions [J]. Rock and Soil Mechanics, 2023, 44(2): 442-450.
[13] SONG Yong-jun, SUN Yin-wei, LI Chen-jing, YANG Hui-min, ZHANG Lei-tao, XIE Li-jun, . Meso-fracture evolution characteristics of freeze-thawed sandstone based on discrete element method simulation [J]. Rock and Soil Mechanics, 2023, 44(12): 3602-3616.
[14] WANG Si-yuan, JIANG Ming-jing, LI Cheng-chao, ZHANG Xu-dong, . Strain localization formation of deep-sea methane hydrate-bearing soils by discrete element simulation of the triaxial test [J]. Rock and Soil Mechanics, 2023, 44(11): 3307-3317.
[15] DENG Peng-hai, LIU Quan-sheng, HUANG Xing, PAN Yu-cong, BO Yin, . Combined finite-discrete element numerical study on the buckling failure mechanism of horizontally layered soft rock mass [J]. Rock and Soil Mechanics, 2022, 43(S2): 508-523.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .