Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (2): 375-384.doi: 10.16285/j.rsm.2023.0243

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effect of drainage conditions during triaxial shearing on particle breakage, deformation, and strength properties of calcareous sand

ZHANG Ji-ru, CHEN Jing-xin, WANG Lei, PENG Wei-ke   

  1. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070, China
  • Received:2023-02-08 Accepted:2023-04-12 Online:2024-02-11 Published:2024-02-06
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (42172295).

Abstract: The particle breakage, deformation, and strength properties of calcareous sand are related to the drainage conditions during shearing. However, the effect of undrained shear processes on the particle breakage and mechanical properties of calcareous sand are rarely considered in the current studies. A series of consolidated drained and undrained triaxial shear tests is conducted on calcareous sand with various initial relative densities under different effective confining pressures to investigate the effects of drainage conditions on particle breakage and mechanical properties during shearing. The results show that the particle breakage rate in the drained shear test is higher than that in the undrained shear test under the same effective confining pressure. The stress–strain curves of calcareous sand exhibit the behavior of strain softening during both drained and undrained shear, and its dilatancy behavior is influenced by the initial relative density and the effective confining pressure. The critical state of calcareous sand is independent of its initial state but related to the drainage conditions during shearing. Both the critical stress ratio and the phase change stress ratio in the drained shear test are larger than those in the undrained shear test. The peak effective friction angle of calcareous sand decreases with the increase of initial relative density, effective confining pressure, and percentage of particle breakage while the critical effective friction angle is not affected by these three factors. Both of these effective friction angles are related to the drainage conditions during shearing. The peak effective friction angle and the critical effective friction angle in the drainage shear test are greater than those in the undrained shear test. The above results indicate that the particle breakage, deformation, and strength properties of calcareous sand are significantly correlated with the drainage conditions during shearing.

Key words: calcareous sand, particle breakage, drainage condition, deformation, shear strength

CLC Number: 

  • TU 411
[1] CHEN Ding, HUANG Wen-xiong, HUANG Dan. A frictional contact algorithm in smoothed particle method with application in large deformation of soils [J]. Rock and Soil Mechanics, 2024, 45(3): 885-894.
[2] WANG Chao-hui, WEN Peng-hui, SONG Liang, NIU Liang-liang, XI He, . Gradation composition design of salt rock aggregate base based on particle breakage characteristics [J]. Rock and Soil Mechanics, 2024, 45(2): 340-352.
[3] ZHAO Cheng-bin, LUO Ya-sheng, FAN Quan, MENG Zhi-tian, SUN Zhe. Viscoelastic-plastic dynamic constitutive model of cohesive soil based on triggered viscoplastic element [J]. Rock and Soil Mechanics, 2024, 45(2): 502-510.
[4] YANG Yang, WANG Le, MA Jian-hua, TONG Chen-xi, ZHANG Chun-hui, WANG Zhi-chao, TIAN Ying-hui, . Mechanism of submarine pipeline penetration into calcareous sand considering particle breakage effect [J]. Rock and Soil Mechanics, 2024, 45(2): 623-632.
[5] JIANG Quan, LIU Qiang, . Mechanical similarity distortion mapping principle and case analysis for underground cavern physical simulation of deformation and failure [J]. Rock and Soil Mechanics, 2024, 45(1): 20-37.
[6] LI Yu-ping, CHEN Jia-rui, SHI Jian-yong, FAN Bao-yun, . Thermo-mechanical volume change behavior and constitutive model of municipal solid waste [J]. Rock and Soil Mechanics, 2024, 45(1): 49-58.
[7] LUO Xiao-qian, KONG Ling-wei, YAN Jun-biao, GAO Zhi-ao, TIAN Sheng-kui, . In-situ borehole shear test and shear strength response characteristics of expansive soil under different saturations [J]. Rock and Soil Mechanics, 2024, 45(1): 153-163.
[8] ZHU Shu, QUE Xiang-cheng, ZHU Zhen-de, ZHU Qi-zhi, . Deformation and strength characteristics of columnar jointed rock mass considering cross-sectional regularity [J]. Rock and Soil Mechanics, 2024, 45(1): 213-225.
[9] QU Xiao-lei, ZHANG Yun-kai, CHEN You-ran, CHEN You-yang, QI Cheng-zhi, . Stability analysis of fractured rock slope based on seepage-deformation coupling model using numerical manifold method [J]. Rock and Soil Mechanics, 2024, 45(1): 313-324.
[10] ZHANG Zhi-guo, MAO Min-dong, WANG Wei-dong, PAN Y T, WU Zhong-teng, . Deformation response of adjacent pile induced by foundation pit excavation under the influence of rainfall [J]. Rock and Soil Mechanics, 2023, 44(S1): 27-49.
[11] ZHANG Da-jin, XIAO Gui-yuan, WU Yue, XU Guang-li, LIU Wei, . Compression deformation mechanisms of red clay driven by heavy metal Cu2+ [J]. Rock and Soil Mechanics, 2023, 44(S1): 127-133.
[12] LI Ying-jie, ZHANG Liang, WANG Bing-qian, LIU Sheng-xin. Anisotropic three-dimensional deformation field characteristics of shale based on CT scanning and digital volume correlation method [J]. Rock and Soil Mechanics, 2023, 44(S1): 134-144.
[13] WANG Wen-dong, DENG Hua-feng, LI Jian-lin, FENG Yun-jie, LI Guan-ye, QI Yu, . Quantitative method of joint matching degree based on effective shear area [J]. Rock and Soil Mechanics, 2023, 44(S1): 249-258.
[14] HONG Yi, ZHENG Bo-wen, YAO Meng-hao, WANG Li-zhong, SUN Hai-quan, XU Dong, . Microstructure and one-dimensional compression characteristics of deep-sea diatomite [J]. Rock and Soil Mechanics, 2023, 44(S1): 268-276.
[15] XU Chao, JIN Yu, YANG Yang, MENG Ya, . Experimental study of deformation of mixed reinforced soil abutment under pavement load [J]. Rock and Soil Mechanics, 2023, 44(S1): 410-418.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .