Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (2): 364-374.doi: 10.16285/j.rsm.2023.0268

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Solidification and carbonization experimental study on magnesium oxide in shield waste soil and its carbonization mechanism

MIN Fan-lu1, 2, 3, SHEN Zheng1, LI Yan-cheng1, YUAN Da-jun2, CHEN Jian3, LI Kai1   

  1. 1. College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 2. School of Civil and Architectural Engineering, Beijing Jiaotong University, Beijing 100091, China; 3. China Railway 14th Bureau Group Co., Ltd., Jinan, Shandong 250014, China
  • Received:2023-03-04 Accepted:2023-07-08 Online:2024-02-11 Published:2024-02-06
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52078189, 52378394) and the Fundamental Research Funds for the Central Universities of China (B230201037).

Abstract: The waste soil generated during shield tunnel construction poses a challenge in terms of stacking, transportation, and treatment. One promising approach is the use of magnesium oxide (MgO) for the solidification treatment of waste soil, as it is abundant in raw materials, has low production energy consumption, and is eco-friendly. The limit moisture content w, unconfined compressive strength qu and modulus of elasticity E50 of MgO solidified and carbonized mucky waste soil were studied by changing the MgO content am, curing age T, and carbonization time H. The solidification and carbonization mechanism of MgO-treated mucky waste soil was discussed in combination with the microstructure and the change rule of mineral composition. The results demonstrate that MgO solidification and carbonization have a significant reinforcing effect on the soil. The reinforcement effect initially increases and then stabilizes with increasing am and T, while it shows an initial increase followed by a decrease with H. Carbonization for 4 hours reduces the soil plasticity index (IP) by more than 57% under different am and T conditions, leading to a significant reduction in soil plasticity. The qu of solidified and carbonized soils reaches a peak value at H of 4 hours, with values up to 1.4 MPa, which is 220%–350% higher than the strength before carbonization. The effect of solidification and carbonization reaction on the increase in E50 of the soil mass is greatly influenced by am. When am exceeds 9%, the E50 increase of the sample carbonized for 4 hours exceeds 500%. During the process of MgO solidification and carbonization, hydration products and carbonization products are continuously generated and developed. They form a network and flower-like microstructure, filling the pores between soil particles, enhancing cementation between soil particles, and densifying the soil structure. The research provides insights into the efficient and eco-friendly treatment and reuse of mucky waste soil produced by earth pressure shield in the Yangtze River Delta.

Key words: waste soil treatment, active magnesium oxide, accelerated carbonization, microstructure, mineral composition, carbonation mechanism

CLC Number: 

  • TU 452
[1] ZHANG Da-jin, XIAO Gui-yuan, WU Yue, XU Guang-li, LIU Wei, . Compression deformation mechanisms of red clay driven by heavy metal Cu2+ [J]. Rock and Soil Mechanics, 2023, 44(S1): 127-133.
[2] ZHANG Yan-mei, ZHANG Jian, YUAN Yan-hao, SUN Wen-xiu, . Experimental study of coastal petroleum-contaminated soil using nano-SiO2 and lime as additives [J]. Rock and Soil Mechanics, 2023, 44(S1): 259-267.
[3] HONG Yi, ZHENG Bo-wen, YAO Meng-hao, WANG Li-zhong, SUN Hai-quan, XU Dong, . Microstructure and one-dimensional compression characteristics of deep-sea diatomite [J]. Rock and Soil Mechanics, 2023, 44(S1): 268-276.
[4] CHENG Guang, FAN Wen, YU Ning-yu, JIANG Cheng-cheng, TAO Yi-quan, . Correlation between soil-water characteristics and microstructure of soil-rock mixture [J]. Rock and Soil Mechanics, 2023, 44(S1): 365-374.
[5] XIE Li-huan, LIU He-juan, BAN Sheng-nan, MAO Hai-jun, XIA De-bin, SONG Yu-jia, TONG Rong-chen, YING Qi-qi, . Experimental study on shear properties of fault gouge with different mineral compositions [J]. Rock and Soil Mechanics, 2023, 44(9): 2545-2554.
[6] ZHANG Jun-ran, SONG Chen-yu, JIANG Tong, WANG Li-jin, ZHAO Jin-di, XIONG Tan-qing, . Hydromechanical characteristics and microstructure of unsaturated loess under high suction [J]. Rock and Soil Mechanics, 2023, 44(8): 2229-2237.
[7] LI Xin-ming, ZHANG Hao-yang, WU Di, GUO Yan-rui, REN Ke-bin, TAN Yun-zhi, . Strength deterioration characteristics of lime-metakaolin improved earthen site soil under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2023, 44(6): 1593-1603.
[8] TIAN Wei, WANG Xiao-hui, YUN Wei, CHENG Xu. Mechanical properties of sand 3D printed rock-like samples based on different post-processing methods [J]. Rock and Soil Mechanics, 2023, 44(5): 1330-1340.
[9] XU Yi-qing, ZHANG Xian-wei, WANG Gang, LIU Xin-yu, GAO Hao-dong, . Microscopic structure and its effects on physical properties of diatomaceous soil [J]. Rock and Soil Mechanics, 2023, 44(12): 3501-3511.
[10] HUANG Xian-wen, YAO Zhi-shu, CAI Hai-bing, LI Kai-qi, TANG Chu-xuan. Prediction of thermal conductivity of unsaturated frozen soil based on microstructure remodeling [J]. Rock and Soil Mechanics, 2023, 44(1): 193-205.
[11] TANG Hua, YAN Song, YANG Xing-hong, WU Zhen-jun, . Shear strength and microstructure of completely decomposed migmatitic granite under different water contents [J]. Rock and Soil Mechanics, 2022, 43(S1): 55-66.
[12] LI Jia-ping, ZHU Ke-chao, ZHOU Xuan, CHEN Yan-li, LI Yu-yang, MA Wen-bo, . Rheological properties of REY-rich deep-sea sediments [J]. Rock and Soil Mechanics, 2022, 43(S1): 348-356.
[13] LEI Hua-yang, ZHANG Wen-zhen, HUO Hai-feng, FENG Shuang-xi, LI Qi-ang, LIU Han-lei, . Correlation between frost heave and microscopic parameters of sand under water vapor recharge [J]. Rock and Soil Mechanics, 2022, 43(9): 2337-2346.
[14] ZHANG Jin-jin, LI Bo, YU Chuang, ZHANG Mao-yu, . Mechanical properties of slag-fly ash based geopolymer stabilized sandy soil [J]. Rock and Soil Mechanics, 2022, 43(9): 2421-2430.
[15] QU Yong-long, YANG Geng-she, XI Jia-mi, HE Hui, DING Xiao, ZHANG Meng, . Deformation and failure characteristics of Cretaceous sandstone under low temperature and loading [J]. Rock and Soil Mechanics, 2022, 43(9): 2431-2442.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[5] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[6] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[7] CHU Xi-hua, XU Yuan-jie. Studies on transformation from M-C criterion to Drucker-Prager criterions based on distortion energy density[J]. , 2009, 30(10): 2985 -2990 .
[8] YANG Kun, ZHOU Chuang-bing WANG Tong-xu. Risk analysis of dam slope under external random multi-loadings[J]. , 2009, 30(10): 3057 -3062 .
[9] WU Zhen-jun, WANG Shui-lin, GE Xiu-run. Slope reliability analysis by random FEM under constraint random field[J]. , 2009, 30(10): 3086 -3092 .
[10] LIU Bin, LI Shu-cai, LI Shu-chen, ZHONG Shi-hang. Study of advanced detection of water-bearing geological structures with DC resistivity method[J]. , 2009, 30(10): 3093 -3101 .