Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (3): 788-796.doi: 10.16285/j.rsm.2023.0493

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Deformation characteristics for single energy pile under combined loads in vertical and horizontal directions

JIANG Ji-ze1, WANG Cheng-long1, 2, 3, HUANG Yu-bin1, ZHAO Hua1, CHEN Zhi-xiong1   

  1. 1. College of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. Academy of Dazu Rock Carvings, Chongqing 402360, China; 3. Chongqing Bureau of Geology and Minerals Exploration, Chongqing 401121, China
  • Received:2023-04-20 Accepted:2023-12-03 Online:2024-03-11 Published:2024-03-20
  • Supported by:
    This work was supported by National Natural Science Foundation of China (52278396), China Postdoctoral Science Foundation (2022M720591) and Special Foundation of Postdoctoral Support Program, Chongqing (2022CQBSHTB3006).

Abstract: Energy piles, as innovative energy underground structure, serve the dual purpose of shallow extracting geothermal energy while bearing the upper building load. There are few studies on the thermomechanical properties of energy piles under combined horizontal and vertical loads. The temperature change of pile body under combined horizontal and vertical loads will result in variations in pile bending moment, horizontal and vertical displacement, etc. This paper investigated the deformation characteristics of energy piles under combined vertical and horizontal loads through model tests with 10 heating-cooling cycles applied to the piles. The results showed that the heating-cooling cycles under combined load led to further increase in the pile bending moment, particularly affecting the middle section of the pile, with the maximum increase in pile bending moment reaching 117%. Additionally, the heating-cooling cycles caused cumulative displacement at the top of the pile. The vertical displacement of the test pile increased by 0.201 mm, and the increase in horizontal displacement due to the thermal cycles reached 1.46% D (D is the diameter of the pile). Simultaneously, the heating-cooling cycles induced a forward tilt of the pile, with the tilt angle reached 1.88×10−3 rad after 10 heating-cooling cycles and gradually increasing with the number of thermal cycles. Moreover, the soil pressure in front of the pile decreased during heating, while increased during cooling.

Key words: energy pile, combined load, model test, heating-cooling cycles, thermo-mechanical behavior

CLC Number: 

  • TU473.1
[1] ZHANG Dong-mei, ZHANG Xue-liang, DU Wei-wei, . Discrete element method based investigation on displacement and bearing characteristics of pile foundation under seepage erosion [J]. Rock and Soil Mechanics, 2024, 45(4): 1181-1189.
[2] ZHU Shu, QUE Xiang-cheng, ZHU Zhen-de, ZHU Qi-zhi, . Deformation and strength characteristics of columnar jointed rock mass considering cross-sectional regularity [J]. Rock and Soil Mechanics, 2024, 45(1): 213-225.
[3] WANG Bin, LI Jie-tao, WANG Jia-jun, CHEN Peng-lin, . Model tests on accumulation landslides induced by extreme rainfall [J]. Rock and Soil Mechanics, 2023, 44(S1): 234-248.
[4] YANG Kai-cheng, WU Shu-guang, LIAO Hai-cheng, ZHANG Hui, . Mechanism analysis and model test research on double anchor rods [J]. Rock and Soil Mechanics, 2023, 44(S1): 495-503.
[5] YIN Ji-chao, BAI Xiao-yu, ZHANG Ya-mei, YAN Nan, WANG Yong-hong, ZHANG Ming-yi, . Development and application of a test device for simulating pile driving and static load in undisturbed mudstone [J]. Rock and Soil Mechanics, 2023, 44(S1): 698-710.
[6] ZOU Wei-lie, FAN Ke-wei, ZHANG Pan, HAN Zhong, . Analysis of lateral pressures on expansive soil retaining wall with expanded polystyrene geofoam inclusions and influence factors [J]. Rock and Soil Mechanics, 2023, 44(9): 2537-2544.
[7] LIU Xin, SHEN Yu-peng, LIU Zhi-jian, WANG Bing-lu, LIU Yue, HAN Yun-xi. Model test on the influence of groundwater seepage velocity on formation of frozen wall in subway cross passage [J]. Rock and Soil Mechanics, 2023, 44(9): 2667-2678.
[8] XIE Kang, SU Qian, CHEN Xiao-bin, LIU Bao, WANG Wu-bin, WANG Xun, DENG Zhi-xing, . Element model test on polyurethane crushed stone waterproof bonding layer of ballastless track [J]. Rock and Soil Mechanics, 2023, 44(8): 2308-2317.
[9] LU Qin-wu, GUAN Zhen-chang, LIN Lin, WU Shu-jing, SONG De-jie. Lining- stratum interaction mechanism of mountain tunnel based on static pushover model test [J]. Rock and Soil Mechanics, 2023, 44(8): 2318-2326.
[10] ZHANG Yuan-sheng, LEI Yun-chao, QIANG Xiao-jun, WU Dong-dong, WANG Dong-po, WANG Ji-hua, . Centrifugal model test of slope reinforced by multi-row micro-pile frame structure [J]. Rock and Soil Mechanics, 2023, 44(7): 1983-1994.
[11] JI Yu-kun, WANG Qin-ke, ZHAO Guo-liang, ZHANG Jian, MA Jian-lin, . Model test and numerical simulation of vertical bearing capacity and deformation characteristics of rock-socketed uplift pile in sloped ground [J]. Rock and Soil Mechanics, 2023, 44(6): 1604-1614.
[12] MA Peng-jie, RUI Rui, CAO Xian-zhen, XIA Rong-ji, WANG Xi, DING Rui-heng, SUN Tian-jian, . Model tests of micropile-reinforced soil slope with long and gently inclined fissures [J]. Rock and Soil Mechanics, 2023, 44(6): 1695-1707.
[13] SONG Yang, WANG Hong-shuai, LI Ang, WANG Xin, XIAO Zuo-ming, YUAN Qiang, . Permeation-compaction diffusion mechanism of shield tail synchronous grouting slurry in water-rich fine sand layer [J]. Rock and Soil Mechanics, 2023, 44(5): 1319-1329.
[14] WANG Li, NAN Fang-yun, WANG Shi-mei, CHEN Yong, LI Xiao-wei, FAN Zhi-hong, CHEN Yu-shan, . Infiltration characteristics and deformation mechanism of rainfall-induced landslides in Three Gorges Reservoir Area based on 1D and 2D model tests [J]. Rock and Soil Mechanics, 2023, 44(5): 1363-1374.
[15] LIU Yong, ZHOU Yi-sheng, SUO Xiao-ming, FAN Hao-bo, CAO Yi-ze, DU Zhi-tian, . Model test on the deformation law of shield tunnel underpassing high speed railway roadbed [J]. Rock and Soil Mechanics, 2023, 44(4): 941-951.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .