›› 2002, Vol. 23 ›› Issue (1): 47-50.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

An anisotropic model of sedimentary rocks

YU Tian-tang 1 ,LU Ying -fa 2 ,J.F.Shao 3 ,S.Pietruszczak 4   

  1. (1.College of Civil Engineering,Hohai University,Nanjing210098,China;2.Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,Wuhan430071,China;3.Laboratoire de Lille,Villeneuved’AscqCedex,France;4. McMasterUniversity ; Hamilton; Canada;
  • Received:2001-03-21 Published:2002-01-15

Abstract: An anisotropic model of sedimentary rocks is presented .the inherent anisotropy of this kind of material is described with an anisotropic parameter .A microstructure tensor and loading orientation are incorporated in the distribution function of anisotropic parameter and uniaxial compressive strength .A complete plasticity model describing the deformation process in anisotropic sedimentary rocks is given. Several triaxial tests are simulated with the anisotropic model .The results show that the inherent anisotropy in sedimentary rocks can be efficiently described with the model .

Key words: anisotropy, sedimentary rocks, microstructure tensor

CLC Number: 

  • TU45
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, WANG Yan-chao, . Effect of water and microstructure on wave velocity anisotropy of schist and its mechanism [J]. Rock and Soil Mechanics, 2019, 40(6): 2221-2230.
[2] JIA Rui, LEI Hua-yang, . Experimental study of anisotropic consolidation behavior of Ariake clay [J]. Rock and Soil Mechanics, 2019, 40(6): 2231-2238.
[3] ZHANG Kun-yong, ZANG Zhen-jun, LI Wei, WEN De-bao, CHARKLEY Frederick Nai, . Three-dimensional elastoplastic model of soil with consideration of unloading stress path and its experimental verification [J]. Rock and Soil Mechanics, 2019, 40(4): 1313-1323.
[4] KE Zhi-qiang, WANG Huan-ling, XU Wei-ya, LIN Zhi-nan, JI Hua, . Experimental study of mechanical behaviour of artificial columnar jointed rock mass containing transverse joints [J]. Rock and Soil Mechanics, 2019, 40(2): 660-667.
[5] ZHOU Hui, CHENG Guang-tan, ZHU Yong, ZHANG Chun-sheng, . Anisotropy of shear characteristics of rock joint based on 3D carving technique [J]. Rock and Soil Mechanics, 2019, 40(1): 118-126.
[6] LI Shen-zhen, SHA Peng, WU Fa-quan, WU Jie. Anisotropic characteristics analysis of deformation of layered rock mass [J]. Rock and Soil Mechanics, 2018, 39(S2): 366-373.
[7] ZHANG Kun-yong, LI Wei, Charkley Nai Frederick, CHEN Shu,. True triaxial test on clay mixed with gravel with stress increment loading from minor principal stress direction [J]. , 2018, 39(9): 3270-3276.
[8] CHEN Dun, MA Wei, WANG Da-yan, MU Yan-hu, LEI Le-le,WANG Yong-tao, ZHOU Zhi-wei, CAI Cong, . Experimental study of deformation characteristics of frozen clay under directional shear stress path [J]. , 2018, 39(7): 2483-2490.
[9] TIAN Yu, YAO Yang-ping, LUO Ting. Explanation and modeling of non-coaxiality of soils from anisotropy [J]. , 2018, 39(6): 2035-2042.
[10] ZHANG Ping, YANG Chun-he, WANG Hu, GUO Yin-tong, XU Feng, HOU Zhen-kun,. Stress-strain characteristics and anisotropy energy of shale under uniaxial compression [J]. , 2018, 39(6): 2106-2114.
[11] SONG Yun-qi, WU Chao-jun, YE Guan-lin,. Permeability and anisotropy of upper Shanghai clays [J]. , 2018, 39(6): 2139-2144.
[12] LI Zhi-gang, XU Guang-li, HUANG Peng, ZHAO Xin, FU Yong-peng, SU Chang,. Mechanical and anisotropic properties of silty slates [J]. , 2018, 39(5): 1737-1746.
[13] CHEN Zi-quan, HE Chuan, WU Di, GAN Lin-wei, XU Guo-wen, YANG Wen-bo. Mechanical properties and energy damage evolution mechanism of deep-buried carbonaceous phyllite [J]. , 2018, 39(2): 445-456.
[14] WU Yong-sheng, TAN Zhong-sheng, YU Yu, JIANG Bo, YU Xian-bin,. Anisotropically mechanical characteristics of Maoxian group phyllite in northwest of Sichuan province [J]. , 2018, 39(1): 207-215.
[15] PENG Jian-wen, ZENG Fei-tao, LI Chang-hong, MIAO Sheng-jun,. Experimental study of anisotropy and mechanical property of quartz sandstone [J]. , 2017, 38(S1): 103-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Da-wei, ZHOU Hui, XIE Shou-yi, ZHANG Kai, SHAO Jian-fu, FENG. Study of Biot’s coefficients of marble during plastic deformation phase[J]. , 2009, 30(12): 3727 -3732 .
[2] LIU Jun-yan,LIU Yan,WANG Hai-ping. Design of removing diagonal brace in sub region considering coordinating role of space support systems[J]. , 2010, 31(9): 2854 -2860 .
[3] ZHU Jian-ming,PENG Xin-po,YAO Yang-ping,XU Jin-hai. Application of SMP failure criterion to computing limit strength of coal pillars[J]. , 2010, 31(9): 2987 -2990 .
[4] QIU Dao-hong, ZHANG Le-wen, LI Shu-cai, XIAO Yun-hua, SUN Huai-feng. Weighted distance discriminant method based on weight back analysis method and its application[J]. , 2010, 31(10): 3243 -3247 .
[5] LU Zheng, YAO Hai-lin, CHENG Ping, WU Wan-ping. Ground vibration of soft subgrade subjected to a non-uniformly distributed train load[J]. , 2010, 31(10): 3286 -3294 .
[6] LI Zhan-hai,ZHU Wan-cheng,FENG Xia-ting,LI Shao-jun,ZHOU Hui,CHEN Bing-rui. Effect of lateral pressure coefficients on damage and failure process of horseshoe-shaped tunnel[J]. , 2010, 31(S2): 434 -441 .
[7] LIU Han-long, WANG Xin-quan, CHEN Yong-hui, LU Jian-hua. Field experimental study of mechanical performance of Y-shaped vibro-pile reinforced embankments[J]. , 2009, 30(2): 297 -304 .
[8] HOU Gong-yu,NIU Xiao-song. Perfect elastoplastic solution of axisymmetric circular openings in rock mass based on Levy-Mises constitutive relation and D-P yield criterion[J]. , 2009, 30(6): 1555 -1562 .
[9] XIAO Ming-zhao,ZHOU Cheng-hao ,CHENG Yun,FENG Xiao-la ,YANG Jun-mei. Application of finite elements and modified simplex method jointed programming technology to displacement back analysis[J]. , 2011, 32(3): 899 -904 .
[10] SONG Ling , LIU Feng-yin , LI Ning . On mechanism of rotary cone penetration test[J]. , 2011, 32(S1): 787 -0792 .