›› 2002, Vol. 23 ›› Issue (5): 546-550.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analytical method for calculating pile-soil-cushion interaction of composite grounds with piles

CHI Yue-jun,SHEN Wei,SONG Er-xiang   

  1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China
  • Received:2001-10-12 Online:2002-10-10 Published:2016-09-04

Abstract: In practice, pile-soil-cushion interaction of composite grounds with piles is not well considered in bearing capacity and settlement estimation. To solve it, based on the relation among pile-soil-cushion, the differential equations of settlements of piles and soil in large-area pile groups together with their solutions are presented. Compared to the results of finite element analysis, these solutions are quite accurate. This method greatly enhances the speed of calculation. The parameters used in this method are all routine soil parameters and are easily obtained through soil test. Also, the stress dependency of both the soil-pile limit friction and the compression modulus is taken into account in the proposed method. This method is practical and applicable to calculate pile-soil stress ratio and settlement of composite grounds with piles.

Key words: Composite grounds with piles, analytical method, bearing capacity, settlement

CLC Number: 

  • TU 473.1
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, LUO Kun, LEI Xiao-yan, XU You-jun, . Analysis for vertical earth pressure transference on overlaying soils of shield tunnel under uniform surface surcharge [J]. Rock and Soil Mechanics, 2019, 40(6): 2213-2220.
[2] ZHANG Zhi-guo, ZHANG Rui, HUANG Mao-song, GONG Jian-fei, . Optimization analysis of pile group foundation based on differential settlement control and axial stiffness under vertical loads [J]. Rock and Soil Mechanics, 2019, 40(6): 2354-2368.
[3] LI Shu-zhao, WANG Zhong-chang, JIA Xu, HE Lin-lin, . Simplified calculation method for cyclic bearing capacity of suction anchors with taut mooring in soft clay [J]. Rock and Soil Mechanics, 2019, 40(5): 1704-1712.
[4] LIU Nian-wu, CHEN Yi-tian, GONG Xiao-nan, YU Ji-tao, . Analysis of deformation characteristics of foundation pit of metro station and adjacent buildings induced by deep excavation in soft soil [J]. Rock and Soil Mechanics, 2019, 40(4): 1515-1525.
[5] LIU Cheng-yu, ZHANG Xiang, CHENG Kai, CHEN Bo-wen, . Experimental study of settlement caused by water and sand inrush in underground engineering [J]. Rock and Soil Mechanics, 2019, 40(3): 843-851.
[6] TAN Guo-hong, XIAO Hai-zhu, DU Xun, HU Wen-jun. Settlement analysis of caisson foundation under main tower of a long span cable-stayed bridge for highway and railway [J]. Rock and Soil Mechanics, 2019, 40(3): 1113-1120.
[7] XU Peng, JIANG Guan-lu, REN Shi-jie, TIAN Hong-cheng, WANG Zhi-meng, . Experimental study of dynamic response of subgrade with red mudstone and improved red mudstone [J]. Rock and Soil Mechanics, 2019, 40(2): 678-683.
[8] ZHONG Guo-qiang, WANG Hao, LI Li, WANG Cheng-tang, XIE Bi-ting, . Prediction of maximum settlement of foundation pit based on SFLA-GRNN model [J]. Rock and Soil Mechanics, 2019, 40(2): 792-798.
[9] FEI Kang, DAI Di, HONG Wei, . A simplified method for working performance analysis of single energy piles [J]. Rock and Soil Mechanics, 2019, 40(1): 70-80.
[10] WANG Jian-jun, CHEN Fu-quan, LI Da-yong. A simple solution of settlement for low reinforced embankments on Kerr foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 250-259.
[11] DU Wei-fei, ZHENG Jian-guo, LIU Zheng-hong, ZHANG Ji-wen, YU Yong-tang, . Settlement behavior of high loess-filled foundation and impact from exhaust conditions [J]. Rock and Soil Mechanics, 2019, 40(1): 325-331.
[12] YANG Gong-biao, ZHANG Cheng-ping, MIN Bo, CAI Yi, . Elastic solution of soil displacement induced by shallow circular tunnel with a cavern in a stratum using function of complex variable method [J]. Rock and Soil Mechanics, 2018, 39(S2): 25-36.
[13] ZONG Zhong-ling, LU Xian-long, LI Qin-song,. Comparison test of compression and uplift on pressure-static and grouting micropiles [J]. , 2018, 39(S1): 362-368.
[14] ZHU Ning , ZHOU Yang , LIU Wei, SHI Pei-xin, WU Ben,. Study of silty soil behavior disturbed for installation of diaphragm wall in Suzhou [J]. , 2018, 39(S1): 529-536.
[15] ZHOU Jia-jin, GONG Xiao-nan, YAN Tian-long, ZHANG Ri-hong, . Behavior of sand filled nodular piles under compression in soft soil areas [J]. , 2018, 39(9): 3425-3432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] SUN De-an,CHEN Bo. Mechanical behavior of remolded overconsolidated Shanghai soft clay and its elastoplastic simulation[J]. , 2010, 31(6): 1739 -1743 .
[3] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
[4] WANG Yang, TANG Xiong-jun, TAN Xian-kun, WANG Yuan-han. Mechanism analysis of floor heave in Yunling Tunnel[J]. , 2010, 31(8): 2530 -2534 .
[5] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[6] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[7] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[8] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[9] HOU Wei2, JIA Yong-gang1,2, SONG Jing-tai3, MENG Xiang-mei4, SHAN Hong-xian1, 2. Factors influencing critical shear stress of silty sediment seabed in Yellow River delta[J]. , 2011, 32(S1): 376 -0381 .
[10] TANG Shi-bin, TANG Chun-an, LI Lian-chong, ZHANG Yong-bin. Investigation on time-dependent deformation of tunnel induced by humidity diffusion[J]. , 2011, 32(S1): 697 -0703 .