›› 2002, Vol. 23 ›› Issue (6): 775-777.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Comprehensive assessment method of stability of critical rock-block mass and its application

XIE Quan-min XIA Yuan-you   

  1. Wuhan Universty of Technology, Wuhan 430070, China
  • Received:2001-10-22 Online:2002-12-10 Published:2016-09-04

Abstract: A comprehensive assessment method of stability of critical rock-block mass is presented. In this method, grey system theory, reliability theory and times series analysis are applied to assess the stability of critical rock-block mass. Taking the #V critical rock-block mass at Qingjiang Power Station for example, its stability is analyzed; and better results are got. The method is simple and practical, and it provides much rationally scientific basis for the design, excavation, construction, stability analysis, reinforcement and safety monitoring of critical rock-block mass in slope engineering.

Key words: critical rock-block mass, stability, comprehensive assessment

CLC Number: 

  • TU 457
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] CHEN Zheng, HE Ping, YAN Du-min, GAO Hong-jie, NIE Ao-xiang, . Upper-bound limit analysis of tunnel face stability under advanced support [J]. Rock and Soil Mechanics, 2019, 40(6): 2154-2162.
[2] ZHU Ren-jie, CHE Ai-lan, YAN Fei, WEN Hai, GE Xiu-run, . Dynamic evolution of rock slope with connective structural surface [J]. Rock and Soil Mechanics, 2019, 40(5): 1907-1915.
[3] LI Chi, WANG Shuo, WANG Yan-xing, GAO Yu, BAI Siriguleng, . Field experimental study on stability of bio-mineralization crust in the desert [J]. Rock and Soil Mechanics, 2019, 40(4): 1291-1298.
[4] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
[5] JIANG Hai-ming, LI Jie, WANG Ming-yang, . Theoretical and experimental research on the low-friction effect in slip stability of blocky rock mass [J]. Rock and Soil Mechanics, 2019, 40(4): 1405-1412.
[6] XU Qiang, XIAO Ming, CHEN Jun-tao, NI Shao-hu, . Solution to seepage monitoring data deficiency and judgement of seepage stability [J]. Rock and Soil Mechanics, 2019, 40(4): 1526-1534.
[7] WU Meng-xi, GAO Gui-yun, YANG Jia-xiu, ZHAN Zheng-gang, . A method of predicting critical gradient for piping of sand and gravel soils [J]. Rock and Soil Mechanics, 2019, 40(3): 861-870.
[8] WANG Qi-qian, ZHOU Hong-fu, FU Wen-xi, YE Fei, . Analysis for influence of water flow drag force on stability of slope shallow soil [J]. Rock and Soil Mechanics, 2019, 40(2): 759-766.
[9] JU Neng-pan, DENG Tian-xin, LI Long-qi, JIANG Jin-yang, ZHANG Chen-yang. Centrifugal shaking table test on toppling deformation mechanism of steep bedding slope under strong earthquake [J]. Rock and Soil Mechanics, 2019, 40(1): 99-108.
[10] YIN Xiao-meng, YAN E-chuan, LIU Xu-yao, LI Xing-ming, . Study on force of underground water in soil stability calculation [J]. Rock and Soil Mechanics, 2019, 40(1): 156-164.
[11] JIANG Xiong, XU Nu-wen, ZHOU Zhong, HOU Dong-qi, LI Ang, ZHANG Min, . Failure mechanism of surrounding rock of bus-bar tunnels at Lianghekou hydropower station subjected to excavation [J]. Rock and Soil Mechanics, 2019, 40(1): 305-314.
[12] HE Hai-jie, LAN Ji-wu, GAO Wu, CHEN Yun-min, MA Peng-cheng, XIAO Dian-kun, . Application and analysis of compressed air drainage wells in landfill slip control [J]. Rock and Soil Mechanics, 2019, 40(1): 343-350.
[13] WU Shun-chuan, JIANG Ri-hua, ZHANG Shi-huai, ZHANG Min, . Application of a modified Hoek-Brown strength criterion to borehole stability analysis [J]. Rock and Soil Mechanics, 2018, 39(S2): 1-13.
[14] QIN Qing-ci, LI Ke-gang, YANG Bao-wei, WANG Ting, ZHANG Xue-ya, GUO Wen. Analysis of damage characteristics of key characteristic points in rock complete stress-strain process [J]. Rock and Soil Mechanics, 2018, 39(S2): 14-24.
[15] LIU Su-jin, GUO Ming-wei, LI Chun-guang, . Determination of main sliding direction for three-dimensional slope [J]. Rock and Soil Mechanics, 2018, 39(S2): 37-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Zhao-qian,XU Ming-de,LIU Quan-sheng. The research on the methodology of weighted average evaluation for surrounding rock stability of tunnel[J]. , 2009, 30(11): 3464 -3468 .
[2] YANG Qiang, LIU Yao-ru, LENG Kuang-dai, Lü Qing-chao, YANG Chun-he. Stability and chain destruction analysis of underground energy storage cluster based on deformation reinforcement theory[J]. , 2009, 30(12): 3553 -3561 .
[3] DONG Jin-yu,YANG Ji-hong,WU Fa-quan,WANG Dong,YANG Guo-xiang. Research on collapse of high cutting slope with horizontal soft-hard alternant strata in Three Gorges reservoir area[J]. , 2010, 31(1): 151 -157 .
[4] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[5] FENG Rui-ling, TAO Jian-li, ZHAO Zhan-chang, SHEN Yu-peng. Research on compaction property of fine soil containing coarse granulae[J]. , 2010, 31(2): 382 -386 .
[6] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[7] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[8] CHENG Yong-chun, GE Qi, HE Feng. Experimental research on critical depth of slip surface of soil slope in seasonal frozen area[J]. , 2010, 31(4): 1042 -1046 .
[9] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[10] WANG Gui-jie, XIE Mo-wen , QIU Cheng, ESAKI Tetsuro. Application of D-INSAR technique to landslide monitoring[J]. , 2010, 31(4): 1337 -1344 .