›› 2004, Vol. 25 ›› Issue (12): 2041-2044.

• Fundamental Theroy and Experimental Research • Previous Articles    

Development and application of soil improvement information management system

LAI Bi-tao , LI Zhang-ming   

  1. Institute of Geotechnical Engineering, Guangdong University of Technology, Guangzhou 510640, China
  • Received:2003-08-18 Online:2004-12-10 Published:2014-08-19

Abstract: A complete soil improvement management information system was developed, which consists of a project problem definition, feasibility study, design and construction code, engineering reconnaissance, design and specifications, construction, monitoring, quality inspection and whole process management including economic, technical and human resource aspects. The system includes the soil improvement method selection and its managements of usual improvement projects, especially for dynamic drainage consolidation methods. The system content could be modified and/or developed according to the need of a practice project. The content, exploiting method, the total construction design, and the selection of hardwave and software for this system are introduced in detail. Finally, the system applies for instance to a real project ------the soft soil improvement for International Exhibition Center of Guangzhou.

Key words: soil improvement, information management system, development, application

CLC Number: 

  • TP 311
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, YU Jia-lin, LÜ He, . Simulation of the failure process of landslides based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(6): 2435-2442.
[2] CHEN Zheng-han, GUO Nan, . New developments of mechanics and application for unsaturated soils and special soils [J]. Rock and Soil Mechanics, 2019, 40(1): 1-54.
[3] FENG Li, ZHANG Mao-sheng, HU Wei, DONG Ying, MENG Xiao-jie. Discussion on microscopic, microcosmic characteristics and developmental mechanism of loess vertical joints [J]. Rock and Soil Mechanics, 2019, 40(1): 235-244.
[4] CHEN Shang-yuan, ZHAO Fei, WANG Hong-jian, YUAN Guang-xiang, GUO Zhi-biao, YANG Jun, . Determination of key parameters of gob-side entry retaining by cutting roof and its application to a deep mine [J]. Rock and Soil Mechanics, 2019, 40(1): 332-342.
[5] LIU Quan-sheng, LUO Ci-you, CHEN Zi-you, LIU He, SANG Hao-min, WANG Wen-kai, . Development of triaxial rheological testing equipment for in-situ rock mass [J]. Rock and Soil Mechanics, 2018, 39(S2): 473-479.
[6] WU Shu-guang, FU Hong-mei, ZHANG Yan-yan,. Study on anchorage mechanism and application of tension-compression dispersive anchor cable [J]. , 2018, 39(6): 2155-2163.
[7] ZOU You-xue, WANG Rui, ZHANG Jian-min, . Implementation of a plasticity model for large post-liquefaction deformation of sand in FLAC3D [J]. , 2018, 39(4): 1525-1534.
[8] LI Shu-cai, HE Peng, LI Li-ping, ZHANG Qian-qing, SHI Shao-shuai, XU Fei, LIU Hong-liang. Reliability analysis method of sub-classification of tunnel rock mass and its engineering application [J]. , 2018, 39(3): 967-376.
[9] LIN Shan, LI Chun-guang, SUN Guan-hua, WANG Shui-lin, YANG Yong-tao,. Complementary algorithm for 2D contact problems and its engineering application [J]. , 2018, 39(10): 3863-3874.
[10] FEI Kang, LIU Han-long, KONG Gang-qiang, CHARLES WW Ng,. Implementation of a thermo-bounding surface model in COMSOL [J]. , 2017, 38(6): 1819-1826.
[11] KE Jin-fu, WU Ai-xiang,. ANSYS secondary development of unified strength theory with semi-implicit integral [J]. , 2017, 38(10): 3048-3052.
[12] HE Peng , XIAO Jie , ZHANG Jian , XU Fei , ZHANG Yun-peng,. FAHP model of dynamic risk assessment for expansive soil cut slope stability and its engineering application [J]. , 2016, 37(S2): 502-512.
[13] QIU Jun, REN Guang-ming, WANG Yun-nan. Characteristics of forming conditions and development scale of toppling in anti-dip and dip stratified slopes [J]. , 2016, 37(S2): 513-524.
[14] YAO Wen-juan, CAI Chen-yu. A new load transfer model of super-long pile [J]. , 2016, 37(S2): 783-787.
[15] WANG Chao, ZHANG She-rong, ZHANG Feng-hua, DU Cheng-bo. A dynamic simulation analysis method of high-steep slopes based on real-time numerical model and its applications [J]. , 2016, 37(8): 2383-2390.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LU Zu-de, CHEN Cong-xin, CHEN Jian-sheng, TONG Zhi-yi, ZUO Bao-cheng. Field shearing test for heavily weathered hornstone of Three Phase Project of Ling'ao Nuclear Power Station[J]. , 2009, 30(12): 3783 -3787 .
[2] GUO Bao-hua. Numerical analysis of hydraulic fracturing on single-holed rock specimens[J]. , 2010, 31(6): 1965 -1970 .
[3] TAN Yun-zhi, KONG Ling-wei, GUO Ai-guo, WAN Zhi. Capillary effect of moisture transfer and its numerical simulation of compacted laterite soil[J]. , 2010, 31(7): 2289 -2294 .
[4] WANG Yun-gang, XIONG Kai, LING Dao-sheng. Upper bound limit analysis of slope stability based on translational and rotational failure mechanism[J]. , 2010, 31(8): 2619 -2624 .
[5] XU Zhi-jun, ZHENG Jun-jie, ZHANG Jun, MA Qiang. Application of cluster analysis and factor analysis to evaluation of loess collapsibility[J]. , 2010, 31(S2): 407 -411 .
[6] FANG Jing-nian, ZHOU Hui, HU Da-wei, SHAO Jian-fu, LIANG Yu-lei. Coupled elastoplastic-damage model for salt rock[J]. , 2011, 32(2): 363 -368 .
[7] QI Jing-jing,XU Ri-qing,WEI Gang. Research on calculation method of soil 3D displacement due to shield tunnel construction[J]. , 2009, 30(8): 2442 -2446 .
[8] WANG Hong-liang , FAN Peng-xian , WANG Ming-yang , LI Wen-pei , QIAN Yue-hong. Influence of strain rate on progressive failure process and characteristic stresses of red sandstone[J]. , 2011, 32(5): 1340 -1346 .
[9] KANG Yong-gang,ZHANG Xiu-e. Nonstationary parameter fractional Burgers model of rock creep[J]. , 2011, 32(11): 3237 -3241 .
[10] YANG Feng-xue ,ZHANG Xi-fa ,LENG Yi-fei ,ZHAO Yi-min. Empirical method for determining thawing volume compression coefficient of frozen soil[J]. , 2011, 32(11): 3432 -3436 .