›› 2005, Vol. 26 ›› Issue (11): 1749-1752.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Influence of seepage on heave of foundation pit base during excavation

LI Yu-qi1, ZHOU Jian1, XIE Kang-he2   

  1. 1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2004-04-29 Online:2005-11-10 Published:2014-01-03

Abstract: Seepage is ubiquitous during excavation in high groundwater table. Analytical formulas for calculating the water head in active and passive zones of foundation pit are derived under the assumption that the seepage is one-dimensional and steady. The influence of seepage on the effective stress and the heave of foundation pit base is analyzed through a numerical example. It is indicated that seepage causes the decrease of effective stress and thus the increase of heave of soil mass beneath foundation pit base.

Key words: seepage, heave, water head, excavation, effective stress

CLC Number: 

  • TU 432
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] LIU Meng-shi, LUO Qiang, JIANG Liang-wei, LU Qing-yuan, LIANG Duo-wei, . Boundary pore characteristics and optimal treatment thickness in seepage test of coarse grained soil [J]. Rock and Soil Mechanics, 2019, 40(5): 1787-1796.
[2] GU Dan-ping, LING Tong-hua, . Analysis of bearing ratio of cement soil and displacement at the top of wall for soil mixing wall construction method of cantilever type [J]. Rock and Soil Mechanics, 2019, 40(5): 1957-1965.
[3] ZHANG Kun-yong, ZANG Zhen-jun, LI Wei, WEN De-bao, CHARKLEY Frederick Nai, . Three-dimensional elastoplastic model of soil with consideration of unloading stress path and its experimental verification [J]. Rock and Soil Mechanics, 2019, 40(4): 1313-1323.
[4] ZHENG Guo-feng, GUO Xiao-xia, SHAO Long-tan, . Experimental verification of an unsaturated shear strength criterion based on the state surface expression [J]. Rock and Soil Mechanics, 2019, 40(4): 1441-1448.
[5] LIU Nian-wu, CHEN Yi-tian, GONG Xiao-nan, YU Ji-tao, . Analysis of deformation characteristics of foundation pit of metro station and adjacent buildings induced by deep excavation in soft soil [J]. Rock and Soil Mechanics, 2019, 40(4): 1515-1525.
[6] XU Qiang, XIAO Ming, CHEN Jun-tao, NI Shao-hu, . Solution to seepage monitoring data deficiency and judgement of seepage stability [J]. Rock and Soil Mechanics, 2019, 40(4): 1526-1534.
[7] WANG Teng, WU Rui. Study of vertical penetration resistance of seabed pipelines in cohesive soil [J]. Rock and Soil Mechanics, 2019, 40(3): 871-878.
[8] XIE Qiang, TIAN Da-lang, LIU Jin-hui, ZHANG Jian-hua, ZHANG Zhi-bin, . Simulation of seepage flow on soil slope and special stress-correction technique [J]. Rock and Soil Mechanics, 2019, 40(3): 879-892.
[9] ZHENG Li-ming, ZHANG Yang-yang, LI Zi-feng, MA Ping-hua, YANG Xin-jun, . Analysis of seepage changes during poroelastic consolidation process with porosity and pressure variation under low-frequency vibration [J]. Rock and Soil Mechanics, 2019, 40(3): 1158-1168.
[10] KANG Yan-fei, CHEN Jie, JIANG De-yi, LIU Wei, FAN Jin-yang, WU Fei, JIANG Chang-qi, . Damage self-healing property of salt rock after brine immersion under different temperatures [J]. Rock and Soil Mechanics, 2019, 40(2): 601-609.
[11] WANG Qi-qian, ZHOU Hong-fu, FU Wen-xi, YE Fei, . Analysis for influence of water flow drag force on stability of slope shallow soil [J]. Rock and Soil Mechanics, 2019, 40(2): 759-766.
[12] WANG Hua-bin, LI Jian-mei, JIN Yi-xuan, ZHOU Bo, ZHOU Yu, . The numerical methods for two key problems in rainfall-induced slope failure [J]. Rock and Soil Mechanics, 2019, 40(2): 777-784.
[13] YIN Xiao-meng, YAN E-chuan, LIU Xu-yao, LI Xing-ming, . Study on force of underground water in soil stability calculation [J]. Rock and Soil Mechanics, 2019, 40(1): 156-164.
[14] YAO Zhi-hua, CHEN Zheng-han, FANG Xiang-wei, HUANG Xue-feng, . Elastoplastic damage seepage-consolidation coupled model of unsaturated intact loess and its application [J]. Rock and Soil Mechanics, 2019, 40(1): 216-226.
[15] WANG Peng-fei, LI Chang-hong, MA Xue-wen, LI Zi-jian, LIU Jing-jun, WU Yang-fan, . Experimental study of seepage characteristics of soil-rock mixture with different rock contents in fault zone [J]. Rock and Soil Mechanics, 2018, 39(S2): 53-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] JIANG Ling-fa, CHEN Shan-xiong, YU Zhong-jiu. Scattering around a liner of arbitrary shape in saturated soil under dilatational waves[J]. , 2009, 30(10): 3063 -3070 .
[2] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[3] YAO Yang-ping,FENG Xing,HUANG Xiang,LI Chun-liang. Application of UH model to finite element analysis[J]. , 2010, 31(1): 237 -245 .
[4] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[5] SUN De-an, CHEN Bo, ZHOU Ke. Experimental study of compression and shear deformation characteristics of remolded Shanghai soft clay[J]. , 2010, 31(5): 1389 -1394 .
[6] YAN Yan,WANG En-zhi,WANG Si-jing. Numerical simulation of rheological properties of rocks in seepage field[J]. , 2010, 31(6): 1943 -1949 .
[7] MA Qiang, ZHENG Jun-jie, ZHANG Jun, ZHAO Dong-an. Mechanism analysis and numerical simulation on load reduction for culvert beneath high filling[J]. , 2010, 31(S1): 424 -429 .
[8] SHEN Yin-bin,ZHU Da-yong,YAO Hua-yan. Critical slip field of slope in process of reservoir water level fluctuations[J]. , 2010, 31(S2): 179 -183 .
[9] QI Sheng-wen, LIU Chun-ling, CHANG Zhong-hua, ZHAI Wen-long. Engineering geology and hydrogeology mapping zonation for post-earthquake rebuilding planning of Yushu Ms7.1 earthquake damaged zone[J]. , 2010, 31(S2): 224 -228 .
[10] WU Zhi-jian, CHE Ai-lan, MA Wei, FENG Shao-kong, SHI Hang. Application study of transient surface wave survey on embankment in permafrost regions[J]. , 2010, 31(S2): 335 -341 .