›› 2005, Vol. 26 ›› Issue (6): 995-999.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Hydraulic model of rock mass with block fracture slope and its numerical simulation

ZHAO Yu1,2, LI Xiao-hong1, LU Yi-yu1, JIN Xiao-guang 1,2   

  1. 1.Key Lab for the Exploitation of Southwestern Resources and the Environmental Disaster Control Engineering, Ministry of Education, Chongqing University, Chongqing 400044, China; 2. College of Civil Eng., Chongqing University, Chongqing 400045, China
  • Received:2004-11-27 Online:2005-06-10 Published:2013-12-17

Abstract: The authors set up reasonable hydraulic model ,which simulates the change of the seepage field and stress field within the slope when the water level is up to 175 m. The seepage model of block-fracture slope is studied. In order to make the model more reasonable and more effective in application, the authors create the seepage model of double porosity media including discrete media and equivalent continuum. Based on the relationship of fracture and engineering mass, 1-2 grade fractal net is considered. According to the equivalent of pressure of two kinds of media, three-dimensional hydraulic model is created using modern fractal theory and its FEM solution is given.

Key words: block fracture slope, fractal net, double media, three-dimensional hydraulic model, FEM

CLC Number: 

  • TU 443
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, YU Jia-lin, LÜ He, . Simulation of the failure process of landslides based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(6): 2435-2442.
[2] HAN Bing, LIANG Jian-wen, ZHU Jun,. Effect of lenticle on seismic response of structures in deep water-saturated poroelastic soft site [J]. , 2018, 39(6): 2227-2236.
[3] LI Zhi-yuan, LI Jian-bo, LIN Gao, . Research on influence of partial terrain to scattering of Rayleigh wave based on SBFEM [J]. , 2018, 39(11): 4242-4250.
[4] LIU Zhen-ping, DU Gen-ming, CAI Jie, ZHOU Fan, LIU Jian, BIAN Kang,. Seamless coupling method of 3DGIS combined with 3DFEM simulation based on MeshPy [J]. , 2018, 39(10): 3841-3852.
[5] ZOU De-gao, LIU Suo, CHEN Kai, KONG Xian-jing, YU Xiang,. Static and dynamic analysis of seismic response nonlinearity for geotechnical engineering using quadtree mesh and polygon scaled boundary finite element method [J]. , 2017, 38(S2): 33-40.
[6] HE Wei-jie, YANG Dong-ying, CUI Zhou-fei. Comparison of theoretical and numerical solution for vertical vibration of a pile considering transverse inertia effect [J]. , 2017, 38(9): 2757-2763.
[7] YAN Cheng-zeng. A new two-dimensional FDEM-flow method for simulating hydraulic fracturing [J]. , 2017, 38(6): 1789-1796.
[8] YAN Fu-you, CHANG Jian, LIU Zhong-yu. A return mapping implicit algorithm for coupled viscoelastic and hyperbolic Drucker-Prager plastic modeling [J]. , 2017, 38(6): 1797-1804.
[9] LIU Zhen-ping, LIU Jian, HE Yu-wei, HE Huai-jian, BIAN Kang,. Seamless coupling of 3D GIS techniques with FEM and its application to tunneling engineering [J]. , 2017, 38(3): 866-874.
[10] YAN Xiu-fa, QIAN Qi-hu, ZHAO Yue-tang, ZHOU Yin-zhi,. A method for simulating fracture in quasi-brittle materials [J]. , 2017, 38(12): 3462-3468.
[11] XIONG Yong-lin, ZHU He-hua, YE Guan-lin, YE Bin,. Analysis of failure of unsaturated soil slope due to rainfall based on soil-water-air seepage-deformation coupling FEM [J]. , 2017, 38(1): 284-290.
[12] FENG Jun, ZHANG Jun-yun, ZHU Ming, JIANG Nan,. Characteristic study of horizontal bearing capacity and pile group effect coefficient of laterally loaded high pile group foundation for bridge in soft soil [J]. , 2016, 37(S2): 94-104.
[13] YAN Zhen, WANG Yuan-zhan, XIAO Zhong, SUN Xi-ping,. Dynamic finite element analyses of undrained strength degradation of soft clay in ABAQUS under cyclic loading [J]. , 2016, 37(S2): 735-744.
[14] YUE Shu-qiao,ZUO Ren-yu,LU Zhao,. A method for calculating active earth pressure of soil piece with a finite width between adjacent foundation pits [J]. , 2016, 37(7): 2063-2069.
[15] ZHANG Jian-cheng , JIA Jin-qing , TU Bing-xiong , HE Hui-rong,. Application of two strength criteria to flexural deformation of Cosserat expanded constitutive model [J]. , 2016, 37(1): 279-286.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Tao, YAN Ke-qin. Numerical simulation for influences of stress paths on earth's surface deformation[J]. , 2010, 31(2): 661 -666 .
[2] MI Hai-zhen, GAO Chun. Experimental study of expansive behaviors of quicklime[J]. , 2010, 31(4): 1253 -1256 .
[3] ZHANG Yu-cheng, YANG Guang-hua, JIANG Yan, YAO Jie, SHI Yong-sheng. Numerical simulation analysis of influence of blasting construction of foundation trench of immersed tunnel on stability of embankment[J]. , 2010, 31(S1): 349 -356 .
[4] ZHANG Lu-ming, ZHENG Ming-xin, HE Min. Study of characteristics of matric suction in landslide slip soils before and after landslide control[J]. , 2010, 31(10): 3305 -3312 .
[5] ZHAN Chuan-ni, WANG Chen, HE Chang-rong. Effects of strain rate on gravelly soil under undrained condition[J]. , 2011, 32(S1): 428 -0432 .
[6] MENG Fan-bing , LIN Cong-mou , CAI li-guang , LI bo. Cumulative damage evaluation of clip rock in small-distance tunnels caused by blasting excavation and its application[J]. , 2011, 32(5): 1491 -1494 .
[7] SUN Jian , WANG Lian-guo , TANG Fu-rong , SHEN Yi-feng , GONG Shi-long. Microseismic monitoring failure characteristics of inclined coal seam floor[J]. , 2011, 32(5): 1589 -1595 .
[8] CUI Wei, SONG Hui-fang, ZHANG She-rong, YAN Shu-wang. Numerical simulation of craters produced by explosion in soil[J]. , 2011, 32(8): 2523 -2528 .
[9] ZHAO Lin , ZENG Xian-ming , LI Shi-min , LIN Da-lu , LU Wei-guo  . Comparative test study of blast-resistance performance of optimal composite anchorage structures and non-optimal composite anchorage structures[J]. , 2011, 32(S2): 76 -82 .
[10] HU Wei , YIN Zhen-yu , DANO Christophe , HICHER Pierre-yves. Constitutive study of crushable granular materials[J]. , 2011, 32(S2): 159 -165 .