›› 2005, Vol. 26 ›› Issue (S1): 91-93.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on mechanism for negative skin friction of cast-in-situ concrete thin-wall pipe pile

ZHANG Xiao-jian, LIU Han-long, FEI Kang, GAO Yu-feng   

  1. Research Institute of Geotechnical Engineering, Hohai University, Nanjing 210098, China
  • Received:2005-01-07 Published:2005-12-15

Abstract: Negative skin friction resistance most possibly exists in piles engineering. Technology of PCC pile is a new ground improvement technology developed independently by Hohai University. Study on negative skin friction of PCC pile hasn’t been carried out. Combined with the previous results and the property of PCC pile, based on Terzaghi consolidation theory, mechanism of negative skin friction of PCC pile has been studied. The results indicated that the negative skin friction doesn’t exist on plug and outside negative friciton can be calculated by previous methods. Differential equation is concluded but it is needed to be proved by tests.

Key words: negative skin friction, PCC pile, Terzaghi consolidation theory, mechanism

CLC Number: 

  • TU 435
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, WANG Yan-chao, . Effect of water and microstructure on wave velocity anisotropy of schist and its mechanism [J]. Rock and Soil Mechanics, 2019, 40(6): 2221-2230.
[2] ZHOU Xiao-wen, CHENG Li, ZHOU Mi, WANG Qi, . Behavior of ball penetration in clay in centrifuge testing [J]. Rock and Soil Mechanics, 2019, 40(5): 1713-1720.
[3] WANG Dong-xing, XIAO Jie, XIAO Heng-lin, MA Qiang, . Experimental study of carbonated-solidified sludge in East Lake, Wuhan [J]. Rock and Soil Mechanics, 2019, 40(5): 1805-1812.
[4] LI Xiao-zhao, QI Cheng-zhi, SHAO Zhu-shan, QU Xiao-lei, . Micromechanics-based model study of shear properties of brittle rocks [J]. Rock and Soil Mechanics, 2019, 40(4): 1358-1367.
[5] WEI Jiu-chuan, HAN Cheng-hao, ZHANG Wei-jie, XIE Chao, ZHANG Lian-zhen, LI Xiao-peng, ZHANG Chun-rui, JIANG Ji-gang. Mechanism of fissure grouting based on step-wise calculation method [J]. Rock and Soil Mechanics, 2019, 40(3): 913-925.
[6] RUI Rui, SUN Yi, ZHU Yong, WU Duan-zheng, XIA Yuan-you, . Mesoscopic working mechanism of cushion of composite foundation under rigid slab [J]. Rock and Soil Mechanics, 2019, 40(2): 445-454.
[7] LI Cheng-wu, FU Shuai, XIE Bei-jing, LI Guang-yao, WAN Tian-yu. Characteristics and generation mechanism of low-frequency magnetic field generated during the damage of coal under static load [J]. Rock and Soil Mechanics, 2019, 40(2): 481-488.
[8] WANG Deng-ke, SUN Liu-tao, WEI Jian-ping, . Microstructure evolution and fracturing mechanism of coal under thermal shock [J]. Rock and Soil Mechanics, 2019, 40(2): 529-538.
[9] JU Neng-pan, DENG Tian-xin, LI Long-qi, JIANG Jin-yang, ZHANG Chen-yang. Centrifugal shaking table test on toppling deformation mechanism of steep bedding slope under strong earthquake [J]. Rock and Soil Mechanics, 2019, 40(1): 99-108.
[10] YUAN Peng-bo, YANG Xuan-yu, ZHAO Tian-yu, . Deterioration characteristics of red-bed sandstone acoustic wave properties due to water and salt solution [J]. Rock and Soil Mechanics, 2019, 40(1): 227-234.
[11] FENG Li, ZHANG Mao-sheng, HU Wei, DONG Ying, MENG Xiao-jie. Discussion on microscopic, microcosmic characteristics and developmental mechanism of loess vertical joints [J]. Rock and Soil Mechanics, 2019, 40(1): 235-244.
[12] JIANG Cheng-xuan, CHEN Bao-guo, MAO Xin-ying, SHE Ming-kang. Stress characteristics of high fill load-shedding culvert on flexible foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 275-280.
[13] WANG Wen-pei, LI Bin, FENG Zhen, ZHANG Bo-wen, GAO Yang, . Failure mechanism of a high-steep rock slope considering site effect [J]. Rock and Soil Mechanics, 2019, 40(1): 297-304.
[14] YANG Ai-wu, HU Yao. Study of engineering properties and micromechanism of new municipal sludge solidified soil [J]. , 2018, 39(S1): 69-78.
[15] ZHAO Zi-jiang, LIU Da-an, CUI Zhen-dong, TANG Tie-wu, HAN Wei-ge,. Experimental study of determining fracture toughness KIC of shale by semi-disk three-point bending [J]. , 2018, 39(S1): 258-266.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Bin, LI Shu-cai, LI Shu-chen, ZHONG Shi-hang. Study of advanced detection of water-bearing geological structures with DC resistivity method[J]. , 2009, 30(10): 3093 -3101 .
[2] ZHONG Jia-yu, ZHENG Yong-lai, NI Yin. Experimental study of response pattern of pore water pressure on sandy seabed under wave action[J]. , 2009, 30(10): 3188 -3193 .
[3] REN Song, JIANG De-yi, YANG Chun-he, TENG Hong-wei. Creep tests on shale of cracking position in Gonghe tunnel and simulating it by DEM[J]. , 2010, 31(2): 416 -421 .
[4] SUN De-an, CHEN Bo, ZHOU Ke. Experimental study of compression and shear deformation characteristics of remolded Shanghai soft clay[J]. , 2010, 31(5): 1389 -1394 .
[5] GUO Yin-tong,YANG Chun-he. Experimental investigation on strength and deformation properties of anhydrite under conventional triaxial compression[J]. , 2010, 31(6): 1776 -1780 .
[6] JIANG Quan,FENG Xia-ting,JIE Bing-hui,ZENG Xiong-hui. Interval analysis method of safety degree for mid partition in underground multi-cavern structure[J]. , 2010, 31(6): 1847 -1852 .
[7] FENG Qing-gao, ZHOU Chuan-bo, FU Zhi-feng, ZHANG Guang-cheng. Grey fuzzy variable decision-making model of supporting schemes for foundation pit[J]. , 2010, 31(7): 2226 -2231 .
[8] WU Zhi-jian, CHE Ai-lan, MA Wei, FENG Shao-kong, SHI Hang. Application study of transient surface wave survey on embankment in permafrost regions[J]. , 2010, 31(S2): 335 -341 .
[9] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[10] ZHU Xun-guo, YANG Qing. Identification and classification of swelling rock[J]. , 2009, 30(S2): 174 -177 .