›› 2006, Vol. 27 ›› Issue (2): 304-308.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Settlement features of embankment of Lianyungang marine clay

ZHANG Ding-wen, LIU Song-yu   

  1. College of Transportation, Southeast University, Nanjing 210096, China
  • Received:2004-09-05 Online:2006-02-10 Published:2013-10-25

Abstract: Time-settlement data of more than 60 different sections of the 31.2 km long Lianyungang-Xuzhou expressway in Lianyungang segment are analyzed. The results indicate that the time-settlement behavior could reasonably be represented by the hyperbolic relationship. According to the estimated long-term settlements, the consolidation characteristics of soft ground improved by using sand mat or dry jet mixed columns are analyzed. The relationships between average degree of consolidation and time in the filling-term and the preloading-term are studied respectively. Results indicate that the presence of dry jet mixed columns could accelerate the consolidation rates of soft ground; although soil-cement columns are considered to be impermeable. In addition, an empirical estimating formula for the magnitude and rate of consolidation settlement of Lianyungang marine clay are proposed by the method of statistics.

Key words: embankment, marine clay, settlement features, sand mat, dry jet mixing (DJM) column, consolidation features

CLC Number: 

  • TU 443
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] FU Hong-yuan, LIU Jie, ZENG Ling, BIAN Han-bing, SHI Zhen-ning, . Deformation and strength tests of pre-disintegrating carbonaceous mudstone under loading and soaking condition [J]. Rock and Soil Mechanics, 2019, 40(4): 1273-1280.
[2] ZHENG Dong, HUANG Jin-song, LI Dian-qing, . An approach for predicting embankment settlement by integrating multi-source information [J]. Rock and Soil Mechanics, 2019, 40(2): 709-719.
[3] WANG Jian-jun, CHEN Fu-quan, LI Da-yong. A simple solution of settlement for low reinforced embankments on Kerr foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 250-259.
[4] WU Jian-tao, YE Xiao, LI Guo-wei, JIANG Chao, CAO Xue-shan, . Bearing and deformation behaviors of PHC pile-reinforced soft foundation under high embankment [J]. Rock and Soil Mechanics, 2018, 39(S2): 351-358.
[5] WANG Yi-min, YAN Cen, YU Heng, LI Qi. Experimental study of soil stress characteristics of geogrid-reinforced widened embankment under static loadings [J]. , 2018, 39(S1): 311-317.
[6] CHEN Fu-quan, LAI Feng-wen, LI Da-yong. State of the art in research of geosynthetic-reinforced embankment overlying voids [J]. , 2018, 39(9): 3362-3376.
[7] ZHAO Jian-jun, YU Jian-le, XIE Ming-li, CHAI He-jun, LI Tao, BU Fan, LIN Bing,. Physical model studies on fill embankment slope deformation mechanism under rainfall condition [J]. , 2018, 39(8): 2933-2940.
[8] LIANG Cheng, XU Chao, . Study on critical height of reinforced embankments with geocell layer [J]. , 2018, 39(8): 2984-2990.
[9] LU Qing-yuan, LUO Qiang, JIANG Liang-wei, . Calculation of stress ratio of rigid pile to composite embankment [J]. , 2018, 39(7): 2473-2482.
[10] LI Han-wen, ZHANG Lu-lu, FENG Shi-jin, ZHENG Wen-Tang,. Moisture migration in a high-speed railway embankment under complex atmospheric environment [J]. , 2018, 39(7): 2574-2582.
[11] NIU Ting-ting, LIU Han-long, DING Xuan-ming, CHEN Yun-min,. Piled embankment model test on vibration characteristics under high-speed train loads [J]. , 2018, 39(3): 872-880.
[12] LIU Guang-xiu , LI Yu-gen, CAO Yan-ni, . Calculation and analysis of lateral deformation of ground under embankment load [J]. Rock and Soil Mechanics, 2018, 39(12): 4517-4526.
[13] LIU Ming-hao, NIU Fu-jun, LIN Zhan-ju, LUO Jing. Long-term cooling effect and deformation characteristics of a U-shaped crushed rock embankment in warm permafrost regions [J]. , 2017, 38(11): 3304-3310.
[14] CHEN Jun, FU Wen-xi, DAI Feng, DENG Jian-hui. Mechanical behaviors of bamboo geogrid in reinforcing filling embankment [J]. , 2017, 38(1): 174-179.
[15] ZHU Bing-er, QI Chang-guang, BAO Jiao-lei. Field test study of load transfer mechanism of plastic tube pile under embankment loading [J]. , 2016, 37(S2): 658-664.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Wei,LI Xing-zhao. Analysis method of rigid piled raft foundation under vertical loading[J]. , 2009, 30(11): 3441 -3446 .
[2] . Numerical implementation of discontinuities in dual media 3D model for thermo-hydro-mechanical coupling[J]. , 2010, 31(2): 638 -644 .
[3] WANG Yang, TANG Xiong-jun, TAN Xian-kun, WANG Yuan-han. Mechanism analysis of floor heave in Yunling Tunnel[J]. , 2010, 31(8): 2530 -2534 .
[4] ZHU Zhen-de,SUN Lin-zhu,WANG Ming-yang. Damping ratio experiment and mesomechanical analysis of deformation failure mechanism on rock under different frequency cyclic loadings[J]. , 2010, 31(S1): 8 -12 .
[5] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[6] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[7] FAN Heng-hui, GAO Jian-en, WU Pu-te, LUO Zong-ke. Physicochemical actions of stabilized soil with cement-based soil stabilizer[J]. , 2010, 31(12): 3741 -3745 .
[8] CHEN Xu-guang,ZHANG Qiang-yong. Mechanism analysis of phenomenon of zonal disintegration in deep tunnel model test under high geostress[J]. , 2011, 32(1): 84 -90 .
[9] ZHENG Hao,LIU Han-long,LEI Yu-hua,REN Lian-wei. Large-scale model test analysis of behaviors of jet grouting (JG) soil-cement-pile strengthened pile under lateral load[J]. , 2011, 32(1): 217 -223 .
[10] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .