›› 2006, Vol. 27 ›› Issue (3): 505-508.

• Fundamental Theroy and Experimental Research • Previous Articles    

Application of FLAC3D to simulation of foundation excavation and support

LIU Ji-guo1, ZENG Ya-wu2   

  1. 1.Second Highway Survey Design and Research Institute, Ministry of Communications, Wuhan 430052, China; 2. School of Civil and Architectural Engineering, Wuhan University, Wuhan 430072, China
  • Received:2004-08-16 Online:2006-03-10 Published:2013-11-06

Abstract: The simulation of excavation and support on the deep pit of the Yangtze River in south was carried out using the software FLAC3D. During the simulation, the Mohr-Coulomb model was used and contact elements were applied on the interfaces between the structure and soil. This simulation offers the settlements of ground uplifts in the bottom of the pit and horizontal displacements of the soil behind the vertical wall in every step.

Key words: FLAC3D, contact, foundation pit excavation and support

CLC Number: 

  • TU 470
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] ZOU You-xue, WANG Rui, ZHANG Jian-mi, . Analysis on the seismic response of stone columns composite foundation in liquefiable soils [J]. Rock and Soil Mechanics, 2019, 40(6): 2443-2455.
[2] YANG Shi-kou, ZHANG Ji-xun, REN Xu-hua, . Study of contact cracks based on improved numerical manifold method [J]. Rock and Soil Mechanics, 2019, 40(5): 2016-2021.
[3] ZHAO Lan-hao, RUI Kai-tian, LIU Xun-nan. A fast linear contact detection algorithm for discrete particles of arbitrary sizes [J]. Rock and Soil Mechanics, 2019, 40(3): 1187-1196.
[4] ZHANG Cheng-gong, YIN Zhen-yu, WU Ze-xiang, JIN Yin-fu, . Three-dimensional discrete element simulation of influence of particle shape on granular column collapse [J]. Rock and Soil Mechanics, 2019, 40(3): 1197-1203.
[5] GU Xiao-qiang, YANG Shuo-cheng, . Numerical investigation on the elastic properties of granular soils by discrete element method [J]. Rock and Soil Mechanics, 2019, 40(2): 785-791.
[6] YANG Xiu-rong, JIANG An-nan, JIANG Zong-bin. Creep test and damage model of soft rock under water containing condition [J]. , 2018, 39(S1): 167-174.
[7] LIU Jian, ZHAO Guo-yan, LIANG Wei-zhang, WU Hao, PENG FU-hua,. Numerical simulation of uniaxial compressive strength and failure characteristics in nonuniform rock materials [J]. , 2018, 39(S1): 505-512.
[8] WEI Kuang-min , CHEN Sheng-shui, LI Guo-ying, WU Jun-jie, . Influence of contact effect between dam body and dam foundation on behaviours of high concrete faced rockfill dam built in steep valleys [J]. , 2018, 39(9): 3415-3424.
[9] ZHAO Ting-ting, FENG Yun-tian, WANG Ming, WANG Yong,. Modified Greenwood-Williamson model based stochastic discrete element method for contact with surface roughness [J]. , 2018, 39(9): 3440-3452.
[10] LIU Xun-nan, ZHAO Lan-hao, MAO Jia, XU Dong,. Discrete element method using three dimensional distance potential [J]. , 2018, 39(7): 2639-2650.
[11] ZHAO Kun, CHEN Wei-zhong, ZHAO Wu-sheng, YANG Dian-sen,SONG Wan-peng, LI Can, MA Shao-sen, . Direct shear test and numerical simulation for mechanical characteristics of the contact surface between the lining and shock absorption layer in underground engineering [J]. , 2018, 39(7): 2662-2670.
[12] LIU Fei-yue, YANG Tian-hong, ZHANG Peng-hai1, ZHOU Jing-ren, DENG Wen-xue, HOU Xian-gang, ZHAO Yong-chuan, . Dynamic inversion of rock fracturing stress field based on acoustic emission [J]. , 2018, 39(4): 1517-1524.
[13] ZOU You-xue, WANG Rui, ZHANG Jian-min, . Implementation of a plasticity model for large post-liquefaction deformation of sand in FLAC3D [J]. , 2018, 39(4): 1525-1534.
[14] LIU Xing-zhi, LIU Xiao-wen, CHEN Ming, GU Ming-han. Soil-water characteristic curve based on particle contact model using three unequal particle sizes [J]. , 2018, 39(2): 651-656.
[15] LUO Xian-qi, ZHENG An-xing,. Application of extended finite element method in modelling fracture of rock mass [J]. , 2018, 39(2): 728-734.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Yong. Research on calculation method of double-row anti-sliding structure under sliding surface[J]. , 2009, 30(10): 2971 -2977 .
[2] LI Hong-bo,GUO Xiao-hong. Research on calculation metheods of earth pressure on muti-arch tunnel for highway[J]. , 2009, 30(11): 3429 -3434 .
[3] QU Wan-bo, LIU Xin-rong, FU Yan, QIN Xiao-ying. Numerical simulation of preliminary lining of large section crossing tunnels constructed with PBA method[J]. , 2009, 30(9): 2799 -2804 .
[4] TAN Yun-zhi, KONG Ling-wei, GUO Ai-guo, WAN Zhi. Capillary effect of moisture transfer and its numerical simulation of compacted laterite soil[J]. , 2010, 31(7): 2289 -2294 .
[5] WANG Yun-gang, XIONG Kai, LING Dao-sheng. Upper bound limit analysis of slope stability based on translational and rotational failure mechanism[J]. , 2010, 31(8): 2619 -2624 .
[6] LENG Yi-fei, ZHANG Xi-fa, YANG Feng-xue, JIANG Long, ZHAO Yi-min. Experimental research on unfrozen water content of frozen soils by calorimetry[J]. , 2010, 31(12): 3758 -3764 .
[7] XU Zhi-jun, ZHENG Jun-jie, ZHANG Jun, MA Qiang. Application of cluster analysis and factor analysis to evaluation of loess collapsibility[J]. , 2010, 31(S2): 407 -411 .
[8] WEI Xin-jiang,GUO Zhi-wei,WEI Gang,ZHANG Shi-min. Study of accident mechanism of shield launching considering seepage[J]. , 2011, 32(1): 106 -110 .
[9] DENG Zong-wei, LENG Wu-ming, LI Zhi-yong, YUE Zhi-ping. Finite element analysis of time effect for coupled problem of temperature and stress fields in slope supported by shotcrete[J]. , 2009, 30(4): 1153 -1158 .
[10] QI Jing-jing,XU Ri-qing,WEI Gang. Research on calculation method of soil 3D displacement due to shield tunnel construction[J]. , 2009, 30(8): 2442 -2446 .