›› 2006, Vol. 27 ›› Issue (4): 594-596.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Application of 3D network modeling rock mass discontinuities to evaluating rock mass quality for dam foundation

WANG Bin1, TANG Hui-ming1, JIAN Wen-xing1, ZHANG Xian-shu1,2   

  1. 1. Engineering Faculty, China University of Geosciences, Wuhan 430074, China; 2. Guizhou Institute of Hydroelectric Survey and Design, Guiyang 550002, China
  • Received:2004-06-16 Online:2006-04-10 Published:2013-11-05

Abstract: Rock quality designation (RQD) is a quantitative parameter that used to reflect the degree of integrality of engineering rock mass. And it has been applied to assess the stability of rock slope in the field of water resources and hydropower engineering, mining, underground engineering, transportation engineering. However, the traditional RQD definition isn’t able to take into account the anisotropy of the engineering rock mass. Aiming at the structural properties of the arch dam of Qianzhong Hydraulic Project in Guizhou Province, and based on the joint network of rock mass simulated by the computer with Monte-Carlo method, a method of deciding RQDt under different threshold values is proposed. Many engineering practices have validated that this method is able to reflect the engineering rock mass quality objectively.

Key words: rock quality designation, engineering rock mass, Monte-Carlo stimulation, anisotropy

CLC Number: 

  • TU 45
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, WANG Yan-chao, . Effect of water and microstructure on wave velocity anisotropy of schist and its mechanism [J]. Rock and Soil Mechanics, 2019, 40(6): 2221-2230.
[2] JIA Rui, LEI Hua-yang, . Experimental study of anisotropic consolidation behavior of Ariake clay [J]. Rock and Soil Mechanics, 2019, 40(6): 2231-2238.
[3] ZHANG Kun-yong, ZANG Zhen-jun, LI Wei, WEN De-bao, CHARKLEY Frederick Nai, . Three-dimensional elastoplastic model of soil with consideration of unloading stress path and its experimental verification [J]. Rock and Soil Mechanics, 2019, 40(4): 1313-1323.
[4] KE Zhi-qiang, WANG Huan-ling, XU Wei-ya, LIN Zhi-nan, JI Hua, . Experimental study of mechanical behaviour of artificial columnar jointed rock mass containing transverse joints [J]. Rock and Soil Mechanics, 2019, 40(2): 660-667.
[5] ZHOU Hui, CHENG Guang-tan, ZHU Yong, ZHANG Chun-sheng, . Anisotropy of shear characteristics of rock joint based on 3D carving technique [J]. Rock and Soil Mechanics, 2019, 40(1): 118-126.
[6] LI Shen-zhen, SHA Peng, WU Fa-quan, WU Jie. Anisotropic characteristics analysis of deformation of layered rock mass [J]. Rock and Soil Mechanics, 2018, 39(S2): 366-373.
[7] ZHANG Kun-yong, LI Wei, Charkley Nai Frederick, CHEN Shu,. True triaxial test on clay mixed with gravel with stress increment loading from minor principal stress direction [J]. , 2018, 39(9): 3270-3276.
[8] CHEN Dun, MA Wei, WANG Da-yan, MU Yan-hu, LEI Le-le,WANG Yong-tao, ZHOU Zhi-wei, CAI Cong, . Experimental study of deformation characteristics of frozen clay under directional shear stress path [J]. , 2018, 39(7): 2483-2490.
[9] TIAN Yu, YAO Yang-ping, LUO Ting. Explanation and modeling of non-coaxiality of soils from anisotropy [J]. , 2018, 39(6): 2035-2042.
[10] ZHANG Ping, YANG Chun-he, WANG Hu, GUO Yin-tong, XU Feng, HOU Zhen-kun,. Stress-strain characteristics and anisotropy energy of shale under uniaxial compression [J]. , 2018, 39(6): 2106-2114.
[11] SONG Yun-qi, WU Chao-jun, YE Guan-lin,. Permeability and anisotropy of upper Shanghai clays [J]. , 2018, 39(6): 2139-2144.
[12] LI Zhi-gang, XU Guang-li, HUANG Peng, ZHAO Xin, FU Yong-peng, SU Chang,. Mechanical and anisotropic properties of silty slates [J]. , 2018, 39(5): 1737-1746.
[13] CHEN Zi-quan, HE Chuan, WU Di, GAN Lin-wei, XU Guo-wen, YANG Wen-bo. Mechanical properties and energy damage evolution mechanism of deep-buried carbonaceous phyllite [J]. , 2018, 39(2): 445-456.
[14] WU Yong-sheng, TAN Zhong-sheng, YU Yu, JIANG Bo, YU Xian-bin,. Anisotropically mechanical characteristics of Maoxian group phyllite in northwest of Sichuan province [J]. , 2018, 39(1): 207-215.
[15] PENG Jian-wen, ZENG Fei-tao, LI Chang-hong, MIAO Sheng-jun,. Experimental study of anisotropy and mechanical property of quartz sandstone [J]. , 2017, 38(S1): 103-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Li-guo,LUO Ya-sheng,LI Yan,WANG Zhi-jie. Research on effect of initial stress conditions on dynamic strength of compacted loess[J]. , 2010, 31(1): 87 -91 .
[2] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[3] WU Zhi-wei, SONG Han-zhou. Numerical simulation of thermal convection in shallow ground temperature field[J]. , 2010, 31(4): 1303 -1308 .
[4] ZHANG Jian-min,WANG Fu-qiang. Post-liquefaction flow failure of saturated dilative sands and its mechanism[J]. , 2010, 31(9): 2711 -2715 .
[5] LU Zheng,YAO Hai-lin,WU Wan-ping,YANG Yang,LUO Xing-wen. Structural analysis and design method of dynamic deformation of expressway subgrade[J]. , 2010, 31(9): 2907 -2912 .
[6] ZHU Jian-ming,PENG Xin-po,YAO Yang-ping,XU Jin-hai. Application of SMP failure criterion to computing limit strength of coal pillars[J]. , 2010, 31(9): 2987 -2990 .
[7] WEN Sen,YANG Sheng-qi. Study of deformations of surrounding rock of tunnel based on Hoek-Brown criterion[J]. , 2011, 32(1): 63 -69 .
[8] GAO Shu-sheng,QIAN Gen-bao,WANG Bin,YANG Zuo-ming,LIU Hua-xun. Numerical simulation study of mechanism for gas supplying and draining in volcanic gas reservoir in Xinjiang based on dual media model[J]. , 2011, 32(1): 276 -280 .
[9] CHAI Bo, YIN Kun-long, CHEN Li-xia, LI Yuan-yao. Analysis of slope deformation under control of rock mass structure[J]. , 2009, 30(2): 521 -525 .
[10] ZHU Sheng, ZHANG Mei-ying, DAI Hui-chao. Back analysis of mechanical parameters for asphalt-concrete core earth-rock dam[J]. , 2009, 30(3): 635 -639 .