›› 2006, Vol. 27 ›› Issue (7): 1166-1170.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Multifractal for structural planes in rock mass of dam site area of Yujianhe Reservoir, Guiyang

WANG Hong-xing1, WANG Guan2, TANG Hui-ming1, WANG Liang-qing1   

  1. 1.Faculty of Engineering, China University of Geosciences, Wuhan 430074, China; 2.School of Computer, China University of Geosciences, Wuhan 430074, China
  • Received:2005-01-24 Online:2006-07-10 Published:2013-11-19

Abstract: The multifractal of the structural planes in rock mass of dam site area of the Yujianhe Reservoir in Guiyang, the capital Guizhou Province, is studied. The results of measurement and statistics of the structural planes in rock mass are applied to study multifractal. At first, multifractal for structural planes is studied using selected area in Area A. Different unit measure in different unit is selected to divide the studied area into squared unit mesh. And then, suitable different real number values are chosen, scale index is gotten using linear fitting method; their relation is obtained. Multifractal dimension, singular index and multifractal spectrum values are obtained using related formulae. Finally, multifractal dimension values, singular index and multifractal spectra values in other areas are obtained using the same method and contrasted. Its results show that the maximum values and average values of multifractal dimensions, singular indexes and multifractal spectra values are in Area A greatest in all selected areas. It shows that the structural planes in rock mass of Area A are complex and inhomogeneous; its engineering property and quality of rock mass are poorer. And the order of arrangement in good and poor quality is given according to the results of multifractal.

Key words: multifractal, structural plane, rock mass, multifractal dimension, multifractal spectrum

CLC Number: 

  • TU 452
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] ZHENG Qing-song, LIU En-long, LIU Ming-xing, . Influence of dip angle of structural planes on mechanical properties of artificial rock samples under triaxial test conditions [J]. Rock and Soil Mechanics, 2019, 40(5): 1854-1861.
[2] JIANG Hai-ming, LI Jie, WANG Ming-yang, . Theoretical and experimental research on the low-friction effect in slip stability of blocky rock mass [J]. Rock and Soil Mechanics, 2019, 40(4): 1405-1412.
[3] KE Zhi-qiang, WANG Huan-ling, XU Wei-ya, LIN Zhi-nan, JI Hua, . Experimental study of mechanical behaviour of artificial columnar jointed rock mass containing transverse joints [J]. Rock and Soil Mechanics, 2019, 40(2): 660-667.
[4] LI Wei, WANG Zhe-chao, BI Li-ping, LIU Jie, . Representative elementary volume size for permeable property and equivalent permeability of fractured rock mass in radial flow configuration [J]. Rock and Soil Mechanics, 2019, 40(2): 720-727.
[5] SUN Qian-cheng, ZHENG Min-zong, LI Shao-jun, GUO Hao-sen, CHENG Yuan, PEI Shu-feng, JIANG Quan, . Variation characteristics and determination of tunnel relaxation depth of columnar jointed rock mass [J]. Rock and Soil Mechanics, 2019, 40(2): 728-736.
[6] ZHENG An-xing, LUO Xian-qi, CHEN Zhen-hua, . Hydraulic fracturing coupling model of rock mass based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(2): 799-808.
[7] JIANG Xiong, XU Nu-wen, ZHOU Zhong, HOU Dong-qi, LI Ang, ZHANG Min, . Failure mechanism of surrounding rock of bus-bar tunnels at Lianghekou hydropower station subjected to excavation [J]. Rock and Soil Mechanics, 2019, 40(1): 305-314.
[8] LIU Yan-zhang, GUO Yun-lin , HUANG Shi-bing , CAI Yuan-tian , LI Kai-bing , WANG Liu-bao , LI Wei , . Study of fracture characteristics and strength loss of crack quasi-sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2018, 39(S2): 62-71.
[9] LI Shen-zhen, SHA Peng, WU Fa-quan, WU Jie. Anisotropic characteristics analysis of deformation of layered rock mass [J]. Rock and Soil Mechanics, 2018, 39(S2): 366-373.
[10] LIU Quan-sheng, LUO Ci-you, CHEN Zi-you, LIU He, SANG Hao-min, WANG Wen-kai, . Development of triaxial rheological testing equipment for in-situ rock mass [J]. Rock and Soil Mechanics, 2018, 39(S2): 473-479.
[11] LIU Gang, MA Feng-shan, ZHAO Hai-jun, FENG Xue-lei, GUO Jie,. Failure mechanisms study of heterogeneous jointed rock mass considering statistical damage model in tensile-shear test [J]. , 2018, 39(S1): 9-20.
[12] LI Dong-qi, LI Zong-li, Lü Cong-cong. Analysis of fracture strength of rock mass considering fissure additional water pressure [J]. , 2018, 39(9): 3174-3180.
[13] GAO Qiang, ZHANG Qiang-yong, ZHANG Xu-tao, XIANG Wen,. Zonal disintegration mechanism analysis based on strain gradient of deep surrounding rock mass under dynamic unloading effect [J]. , 2018, 39(9): 3181-3194.
[14] WANG Feng-yun, QIAN De-ling. Elasto-plastic analysis of a deep circular tunnel based on tangential strain softening [J]. , 2018, 39(9): 3313-3320.
[15] DENG Yang-yang, CHEN Cong-xin, XIA Kai-zong, FU-hua, SUN Chao-yi, SONG Xu-gen, . Ground movement and deformation caused by underground mining in eastern area of Chengchao iron mine [J]. , 2018, 39(9): 3385-3394.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[2] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[3] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[4] LEI Ming-feng, PENG Li-min, SHI Cheng-hua, AN Yong-lin. Research on construction spatial effects in large-long-deep foundation pit[J]. , 2010, 31(5): 1579 -1584 .
[5] HU Yong-gang, LUO Qiang, ZHANG Liang, HUANG Jing, CHEN Ya-mei. Deformation characteristics analysis of slope soft soil foundation treatment with mixed-in-place pile by centrifugal model tests[J]. , 2010, 31(7): 2207 -2213 .
[6] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[7] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[8] LIU Han-long,TAO Xue-jun,ZHANG Jian-wei,CHEN Yu-min. Behavior of PCC pile composite foundation under lateral load[J]. , 2010, 31(9): 2716 -2722 .
[9] WANG Xue-wu,XU Shang-jie,DANG Fa-ning,CHENG Su-zhen. Analysis of stability of dam slope during rapid drawdown of reservoir water level[J]. , 2010, 31(9): 2760 -2764 .
[10] WANG Wei-ming, SUN Rui, CAO Zhen-zhong, YUAN Xiao-ming. Comparative study of features of liquefied sites at home and abroad[J]. , 2010, 31(12): 3913 -3918 .