›› 2006, Vol. 27 ›› Issue (8): 1248-1252.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Multi-axial experimental study on creep and relaxation properties of red sandstone from somewhere

LI You1, 3, ZHU Wei-shen2, 3, PENG Yi1, LI Ni1, HUANG Chao-qiang4   

  1. 1. School of Civil and Architectural Engineering, Central South University, Changsha 410075, China; 2. Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan 250061, China; 3. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 4. China Communications Second Highway Survey, Design & Research Institue, Wuhan 430052, China
  • Received:2004-11-01 Online:2006-08-10 Published:2013-11-26

Abstract: Compared with uniaxial experimental study on creep and relaxation properties of rock, multi-axial experiment study is very few, which makes 3-D creep and relaxation model of rock to be just simply extension without enough experiment verification. For gathering useful data and prompting development of multi-axial creep and relaxation model of rock, the following experiments were done with the red sandstone obtained from somewhere in Guangdong Province, China: (1) creep and relaxation properties of rock under different confining pressure; (2) creep and relaxation properties of rock subjected to pressures from two directions; (3) comparison of creep and relaxation properties between air-dried and saturation samples under multi-axial pressure. By analyzing experimental results, some features or phenomena are found on creep and relaxation properties of the red sandstone, for example, when axial pressures are the same, the higher confining pressure is, the smaller creep is, when confining pressures and relaxation time are the same, the higher is, the larger relaxation of is; etc.. All these are of some significance to theoretical study of rock mechanics and the design and construction of practical engineering.

Key words: rock mechanics, creep, relaxation, saturation, red sandstone

CLC Number: 

  • TU 458+.4
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] KONG Xian-jing, NING Fan-wei, LIU Jing-mao, ZOU De-gao, ZHOU Chen-guang, . Influences of stress paths and saturation on particle breakage of rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(6): 2059-2065.
[2] TIAN Jun, LU Gao-ming, FENG Xia-ting, LI Yuan-hui, ZHANG Xi-wei. Experimental study of the microwave sensitivity of main rock-forming minerals [J]. Rock and Soil Mechanics, 2019, 40(6): 2066-2074.
[3] ZHAO Zhen-hua, ZHANG Xiao-jun, LI Xiao-cheng, . Experimental study of stress relaxation characteristics of hard rocks with pressure relief hole [J]. Rock and Soil Mechanics, 2019, 40(6): 2192-2199.
[4] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A nonlinear creep model of rock based on the strain softening index [J]. Rock and Soil Mechanics, 2019, 40(6): 2239-2246.
[5] SU Guo-shao, YAN Si-zhou, YAN Zhao-fu, ZHAI Shao-bin, YAN Liu-bin, . Evolution characteristics of acoustic emission in rockburst process under true-triaxial loading conditions [J]. Rock and Soil Mechanics, 2019, 40(5): 1673-1682.
[6] CAO Meng, YE Jian-hong, . Creep-stress-time four parameters mathematical model of calcareous sand in South China Sea [J]. Rock and Soil Mechanics, 2019, 40(5): 1771-1777.
[7] LUO Dan-ni, SU Guo-shao, HE Bao-yu, . True triaxial test on rockburst of granites with different water saturations [J]. Rock and Soil Mechanics, 2019, 40(4): 1331-1340.
[8] WANG Yu, AI Qian, LI Jian-lin, DENG Hua-feng, . Damage characteristics of sandstone under different influence factors and its unloading failure meso-morphology properties [J]. Rock and Soil Mechanics, 2019, 40(4): 1341-1350.
[9] LI Xiao-zhao, QI Cheng-zhi, SHAO Zhu-shan, QU Xiao-lei, . Micromechanics-based model study of shear properties of brittle rocks [J]. Rock and Soil Mechanics, 2019, 40(4): 1358-1367.
[10] ZHU Sai-nan, YIN Yue-ping, LI Bin, . Shear creep behavior of soft interlayer in Permian carbonaceous shale [J]. Rock and Soil Mechanics, 2019, 40(4): 1377-1386.
[11] WANG Tao, LIU Si-hong, ZHENG Shou-ren, LU Yang, . Experimental study of compression characteristics of rockfill materials with composite grout [J]. Rock and Soil Mechanics, 2019, 40(4): 1420-1426.
[12] CHEN Wen-wu, LIU Wei, WANG Juan, SUN Guan-ping, WU Wei-jiang, . Relationship between saturation degree and B value for loess [J]. Rock and Soil Mechanics, 2019, 40(3): 834-842.
[13] CHEN Wei-zhong, LI Fan-fan, MA Yong-shang, LEI Jiang, YU Hong-dan, XING Tian-hai, ZHENG You-lei, JIA Xiao-dong, . Development of a parallel-linkage triaxial testing machine for THM coupling in soft rock [J]. Rock and Soil Mechanics, 2019, 40(3): 1213-1220.
[14] LI Xin, LIU En-long, HOU Feng, . A creep constitutive model for frozen soils considering the influence of temperature [J]. Rock and Soil Mechanics, 2019, 40(2): 624-631.
[15] ZHENG Guang-hui, XU Jin-yu, WANG Peng, FANG Xin-yu, WANG Pei-xi, WEN Ming, . Physical characteristics and degradation model of stratified sandstone under freeze-thaw cycling [J]. Rock and Soil Mechanics, 2019, 40(2): 632-641.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHOU Yong-xi, ZHANG De-xuan, LUO Chun-yong, CHEN Jun. Experimental research on steady strength of saturated loess[J]. , 2010, 31(5): 1486 -1490 .
[2] ZHAO Ying, LIANG Bing, XUE Qiang, LIU Lei. Numerical simulation analysis of effect of surface water infiltration on water quality and quantity in landfills[J]. , 2010, 31(7): 2295 -2302 .
[3] HUANG Qiang-bing,PENG Jian-bing,DENG Ya-hong,FAN Wen. Design parameters of Xi’an metro line 2 tunnel passing through active ground fissure zones[J]. , 2010, 31(9): 2882 -2888 .
[4] ZHANG Hu-yuan, CUI Su-li, LIU Ji-sheng, LIANG Jian. Experimental study of swelling pressure of compacted bentonite-sand mixture[J]. , 2010, 31(10): 3087 -3095 .
[5] Lü Xiang-feng,PAN Yi-shan,LIU Jian-jun,TANG Ju-peng,DI Jun-zhen. Experimental study of effect of pore pressure on desorption deformation of coal matrix[J]. , 2010, 31(11): 3447 -3451 .
[6] CHAI Bo, YIN Kun-long, CHEN Li-xia, LI Yuan-yao. Analysis of slope deformation under control of rock mass structure[J]. , 2009, 30(2): 521 -525 .
[7] HUANG Qiang-bing,PENG Jian-bing,YAN Jin-kai,CHEN Li-wei. Model test study of influence of ground fissure movement on stress and deformation of soil mass[J]. , 2009, 30(4): 903 -908 .
[8] DENG Hua-feng,ZHANG Guo-dong,WANG Le-hua,DENG Cheng-jin,GUO Jing,LU Tao. Monitoring and analysis of blasting vibration in diversion tunnel excavation[J]. , 2011, 32(3): 855 -860 .
[9] LIN Zhan-ju , NIU Fu-jun , LIU Hua , LU Jia-hao. Influences of freezing-thawing cycles on physico-mechanical properties of rocks of embankment revetments in permafrost regions[J]. , 2011, 32(5): 1369 -1376 .
[10] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .