›› 2006, Vol. 27 ›› Issue (S1): 439-442.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

System analysis and its application to underground chambers

LI Xiao-jing,ZHU Wei-shen,YANG Wei-min   

  1. Geotechnical and Structaral Engineering Research Center Shandong University,Jinan 250061,China
  • Received:2006-05-25 Published:2006-12-15

Abstract: Based on the underground structure scheme of Longtan Hydropower Project, lots of elastoplastic numerical analysis were conducted considering modulus of deformation, layout depth of underground opening, height of main power house, coefficient of lateral compressive stress and spacing interval of underground houses as the mainly mechanical parameters that influenced the stability analysis of underground caverns. The mathematical statistics method was employed to investigate the displacement variation law of key point surrounding house periphery and found the forecast model. Then the forecast model was used to analyze the engineerings. It is shown that there is a better agreement between theoretic result and monitoring result in situ[1].

Key words: stability of cavern, numerical simulation, regression analysis, displacement forecasting

CLC Number: 

  • TV 662
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A nonlinear creep model of rock based on the strain softening index [J]. Rock and Soil Mechanics, 2019, 40(6): 2239-2246.
[2] ZHANG Cong, LIANG Jing-wei, YANG Jun-sheng, CAO Lei, XIE Yi-peng, ZHANG Gui-jin, . Research on the diffusion mechanism and application of pulsate grouting in embankment and dam [J]. Rock and Soil Mechanics, 2019, 40(4): 1507-1514.
[3] YAN Jian, HE Chuan, WANG Bo, MENG Wei, . Influence of high geotemperature on rockburst occurrence in tunnel [J]. Rock and Soil Mechanics, 2019, 40(4): 1543-1550.
[4] LI Shi-jun, MA Chang-hui, LIU Ying-ming, HAN Yu-zhen, ZHANG Bin, ZHANG Ga, . Centrifuge model tests and numerical simulation on progressive failure behavior of slope above a mine-out area [J]. Rock and Soil Mechanics, 2019, 40(4): 1577-1583.
[5] LANG Ying-xian, LIANG Zheng-zhao, DUAN Dong, CAO Zhi-lin, . Three-dimensional parallel numerical simulation of porous rocks based on CT technology and digital image processing [J]. Rock and Soil Mechanics, 2019, 40(3): 1204-1212.
[6] YANG Ai-wu, PAN Ya-xuan, CAO Yu, SHANG Ying-jie, WU Ke-long, . Laboratory experiment and numerical simulation of soft dredger fill with low vacuum pre-compression [J]. Rock and Soil Mechanics, 2019, 40(2): 539-548.
[7] WANG Hua-bin, LI Jian-mei, JIN Yi-xuan, ZHOU Bo, ZHOU Yu, . The numerical methods for two key problems in rainfall-induced slope failure [J]. Rock and Soil Mechanics, 2019, 40(2): 777-784.
[8] CHEN Shang-yuan, ZHAO Fei, WANG Hong-jian, YUAN Guang-xiang, GUO Zhi-biao, YANG Jun, . Determination of key parameters of gob-side entry retaining by cutting roof and its application to a deep mine [J]. Rock and Soil Mechanics, 2019, 40(1): 332-342.
[9] ZHENG Jun-jie, LÜ Si-qi, CAO Wen-zhao, JING Dan, . Numerical simulation of composite rigid-flexible pile-supported retaining wall under the action of high-filled expansive soil [J]. Rock and Soil Mechanics, 2019, 40(1): 395-402.
[10] LI Yang, SHE Cheng-xue, ZHU Huan-chun, . Simulation and verification of particle flow of vibration rolling compaction of field rockfill [J]. Rock and Soil Mechanics, 2018, 39(S2): 432-442.
[11] ZHANG Zhi-guo, ZHANG Cheng-ping, MA Bing-bing, GONG Jian-fei, YE Tong. Physical model test and numerical simulation for anchor cable reinforcements of existing tunnel under action of landslide [J]. , 2018, 39(S1): 51-60.
[12] OU Xiao-duo, PAN Xin, HOU Kai-wen, JIANG Jie , LIU Zi-yan,. Electrical shock characteristics of hydraulic fill in reclamation land in Beibu Gulf of Guangxi [J]. , 2018, 39(S1): 348-354.
[13] LIU Jian, ZHAO Guo-yan, LIANG Wei-zhang, WU Hao, PENG FU-hua,. Numerical simulation of uniaxial compressive strength and failure characteristics in nonuniform rock materials [J]. , 2018, 39(S1): 505-512.
[14] LI Zhao-hua, HU Jie, FENG Ji-li, GONG Wen-jun. Numerical simulation of debris flow based on visco-elastoplastic constitutive model [J]. , 2018, 39(S1): 513-520.
[15] ZHU Ning , ZHOU Yang , LIU Wei, SHI Pei-xin, WU Ben,. Study of silty soil behavior disturbed for installation of diaphragm wall in Suzhou [J]. , 2018, 39(S1): 529-536.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Yuan-jie, PAN Jia-jun, LIU Zu-die. An algorithm for slope paving of concrete faced rockfill dams[J]. , 2009, 30(10): 3139 -3144 .
[2] GAO Guang-yun, ZHAO Yuan-yi, GAO Meng, YANG Cheng-bin. Improved calculation for lateral dynamic impedance of pile groups in layered soil[J]. , 2010, 31(2): 509 -515 .
[3] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[4] LIU Jie, HE Jie, MIN Chang-qing. Contrast research of bearing behavior for composite foundation with tapered piles and cylindrical piles[J]. , 2010, 31(7): 2202 -2206 .
[5] ZHANG Jian-min,WANG Fu-qiang. Post-liquefaction flow failure of saturated dilative sands and its mechanism[J]. , 2010, 31(9): 2711 -2715 .
[6] LIU Han-long,TAO Xue-jun,ZHANG Jian-wei,CHEN Yu-min. Behavior of PCC pile composite foundation under lateral load[J]. , 2010, 31(9): 2716 -2722 .
[7] WANG Xue-wu,XU Shang-jie,DANG Fa-ning,CHENG Su-zhen. Analysis of stability of dam slope during rapid drawdown of reservoir water level[J]. , 2010, 31(9): 2760 -2764 .
[8] WANG Guan-shi,LI Chang-hong,HU Shi-li,FENG Chun,LI Shi-hai. A study of time-and spatial-attenuation of stress wave amplitude in rock mass[J]. , 2010, 31(11): 3487 -3492 .
[9] WANG Wei-ming, SUN Rui, CAO Zhen-zhong, YUAN Xiao-ming. Comparative study of features of liquefied sites at home and abroad[J]. , 2010, 31(12): 3913 -3918 .
[10] XIONG Wei, ZHOU Zeng-hui, YU Kai-biao, WU Ya-ping, LUO Wei. Concrete ultrasonic tomography imaging and improvement based on curved path[J]. , 2011, 32(2): 629 -634 .