›› 2006, Vol. 27 ›› Issue (S1): 958-960.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Design and stability analysis of reinforced high rock slopes

FENG Yu-bo1,LI Nai-yuan2,CHI Yan-zhi3,LIU Xiao-bin4   

  1. 1. Jiaonan Administrater Department of Civil Engineering, Jiaonan 266400, China;2. Jiaonan Administrater Department of Quality of Civil Engineering, Jiaonan 266400, China;3. Jiaonan Civil Administrater Department, Jiaonan 266400, China;4. Shandong University of Science and Technology, Taian 271019, China
  • Received:2006-07-15 Published:2006-12-15

Abstract: The design of reinforced high rock slope is made by analyzing its stability. The detailed programme is to utilize combined anchor and concrete. And the design is proved to be efficient with finite difference method. The finite difference model of the reinforced slope is created. The slide face disappears after reinforcing; and the stability coefficient meets the safe rule. The whole slope is stable. The method and conclusion are efficient to actual slope engineering and design.

Key words: fast Lagrangian analysis for continuum FLAC, rock high slope, stability analysis, plantback

CLC Number: 

  • O 241
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • [1] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
    [2] QIN Yu-qiao, TANG Hua, FENG Zhen-yang, YIN Xiao-tao, WANG Dong-ying, . Slope stability evaluation by clustering analysis [J]. , 2018, 39(8): 2977-2983.
    [3] LI Qing-chuan, LI Shu-cai, WANG Han-peng, ZHANG Hong-jun,ZHANG Bing, ZHANG Yu-qiang,. Stability analysis and numerical experiment study of excavation face for tunnels overlaid by quicksand stratum [J]. , 2018, 39(7): 2681-2690.
    [4] ZHANG Hai-tao, LUO Xian-qi, SHEN Hui, BI Jin-feng. Vector-sum-based slip surface stress method for analysing slip mass stability [J]. , 2018, 39(5): 1691-1698.
    [5] LI Ning, GUO Shuang-feng, YAO Xian-chun,. Further study of stability analysis methods of high rock slopes [J]. , 2018, 39(2): 397-406.
    [6] ZHU Yan-peng, YANG Xiao-yu, MA Xiao-rui, YANG Xiao-hui, YE Shuai-hua, . Several questions of double reduction method for slope stability analysis [J]. , 2018, 39(1): 331-338.
    [7] NIE Zhi-bao, ZHENG Hong, ZHANG Tan. Determination of slope critical slip surfaces using strength reduction method and wavelet transform [J]. , 2017, 38(6): 1827-1831.
    [8] ZHANG Kun, XU Qing, WANG Yi-fan, A Hu-bao. Application of self-adaptive differential evolution algorithm in searching for critical slip surface of slope [J]. , 2017, 38(5): 1503-1509.
    [9] FU Gui-jun, ZHANG Si-yuan, ZHANG Yu-jun. A rheological model for dual-pore-fracture rock mass and its application to finite element analysis of underground caverns [J]. , 2017, 38(2): 601-609.
    [10] DENG Dong-ping, LI Liang. Three-dimensional limit equilibrium method for slope stability based on assumption of stress on slip surface [J]. , 2017, 38(1): 189-196.
    [11] ZHOU Yong, WANG Zheng-zhen, . Improvement of internal stability analysis method of soil nailing wall [J]. , 2016, 37(S2): 356-362.
    [12] HAN Long-qiang, WU Shun-chuan, LI Zhi-peng, . Study of non-proportional strength reduction method based on Hoek-Brown failure criterion [J]. , 2016, 37(S2): 690-696.
    [13] SONG Zi-heng, YANG Qiang, LIU Yao-ru. Elastoplastic model for geomaterial considering effect of pore water pressure and its finite elements implementation [J]. , 2016, 37(S1): 500-508.
    [14] GAO Ru-chao, LI Chun-guang, SUN Cong, ZHENG Hong, GE Xiu-run,. Lower bound finite element method for analyzing tenso-shear failure of slopes [J]. , 2016, 37(8): 2426-2432.
    [15] YAN Chao ,LIU Song-yu ,JI Xiao-lei,. Research on a secondary sliding surface analysis approach based on strength reduction method [J]. , 2016, 37(4): 935-942.
    Viewed
    Full text


    Abstract

    Cited

      Shared   
      Discussed   
    [1] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
    [2] LIU Quan-sheng, HU Yun-hua, LIU Bin. Progressive damage constitutive models of granite based on experimental results[J]. , 2009, 30(2): 289 -296 .
    [3] ZHANG Yu-min, SHENG Qian, ZHANG Yong-hui, ZHU Ze-qi. Artificial simulation of nonstationary artificial seismic motion for large-scale underground cavern group located in alpine gorge area[J]. , 2009, 30(S1): 41 -46 .
    [4] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
    [5] ZHOU Yang, ZHOU Guo-qing. Semi-analytical solution for temperature field of one-dimensional soil freezing problem[J]. , 2011, 32(S1): 309 -0313 .
    [6] XING Wan-bo , ZHOU Zhong , TANG Zhong-min , SUN Gang. A new back-analysis method based on ν-SVR and improved PSO algorithm and its application[J]. , 2009, 30(S2): 540 -546 .
    [7] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .
    [8] YUAN Jing-qiang , CHEN Wei-zhong , TAN Xian-jun , WANG Hui. Mesomechanical simulation of grouting in weak strata[J]. , 2011, 32(S2): 653 -659 .
    [9] ZHOU Jia-wu, LIU Yuan-xue, LU Xin, ZHENG Ying-ren. Existence and decoupling for flow potential of geomaterials[J]. , 2012, 33(2): 375 -381 .
    [10] LIU Xiao ,TANG Hui-ming ,XIONG Cheng-ren . Patterns, problems, and development trends of analysis methods for slope dynamic reliability[J]. , 2013, 34(5): 1217 -1234 .