›› 2007, Vol. 28 ›› Issue (8): 1671-1676.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

The electrical resistivity characteristics of unsaturated clayey Soil

ZHA Fu-sheng1, 2, LIU Song-yu1, DU Yan-jun1, CUI Ke-rui2   

  1. 1.Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, China; 2. School of Resources & Environmental Engineering, Hefei University of Technology, Hefei 210009, China
  • Received:2005-09-01 Online:2007-08-10 Published:2013-10-15

Abstract: Electric current flows through clayey soils by the conduction of void water, electric double layer and clay minerals. The electrical characteristics of clay are discussed at first. Based on the hypothesis that there are three conductance pathways in unsaturated clay, and aiming at the deficiency of the existing models of unsaturated clayey soil, the electrical resistivity model of unsaturated clayey soil is studied. The main factors which affect the electrical resistivity of soils are summarized and analyzed. Through the laboratory tests, the characteristics of the influences of water content, the resistivity of pore fluid, temperature and porosity on the electrical resistivity of Hefei expansive soil are studied.

Key words: unsaturated clay, conductance, electrical resistivity, expansive soil

CLC Number: 

  • TU 411
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] ZHENG Jun-jie, LÜ Si-qi, CAO Wen-zhao, JING Dan, . Numerical simulation of composite rigid-flexible pile-supported retaining wall under the action of high-filled expansive soil [J]. Rock and Soil Mechanics, 2019, 40(1): 395-402.
[2] ZHUANG Xin-shan, WANG Jun-xiang, WANG Kang, LI Kai, HU Zhi. Experimental study on dynamic characteristics of expansive soil modified by weathered sand [J]. Rock and Soil Mechanics, 2018, 39(S2): 149-156.
[3] LI Guo-wei, SHI Sai-jie, HOU Yu-zhou, WU Jian-tao, LI Feng, WU Shao-p, . Experimental study of development technology of non-expansive soil in Yangtze River to Huaihe River water diversion experimental project [J]. Rock and Soil Mechanics, 2018, 39(S2): 302-314.
[4] HU Dong-xu, LI Xian , ZHOU Chao-yun, XUE Le, LIU Hong-fu, WANG Shi-ji. Quantitative analysis of swelling and shrinkage cracks in expansive soil [J]. , 2018, 39(S1): 318-324.
[5] YANG He-ping, TANG Xian-yuan, WANG Xing-zheng, XIAO Jie, NI Xiao,. Shear strength of expansive soils under wet-dry cycles with loading [J]. , 2018, 39(7): 2311-2317.
[6] ZHANG Chun-xiao, XIAO Hong-bin, BAO Jia-miao, YIN Ya-hu, YIN Duo-lin. Stress relaxation model of expansive soils based on fractional calculus [J]. , 2018, 39(5): 1747-1752.
[7] MAO Xin, WANG Shi-ji, CHENG Ming-shu, CHEN Zheng-han, WANG Xiao-qi,. Mechanical behavior of expansive soil under initial damage and wetting-drying cycles [J]. , 2018, 39(2): 571-579.
[8] KONG Xiao-ang, CAI Guo-qing, LIU Zhen-zhen, ZHAO Cheng-gang, . Research on tensile-shear coupling strength of unsaturated clays [J]. , 2017, 38(S2): 9-17.
[9] YAO Chuan-qin, WEI Chang-fu, MA Tian-tian, CHEN He-long, CHEN Huo-dong,. Effects of pore solution on mechanical properties of expansive soil [J]. , 2017, 38(S2): 116-122.
[10] XIAN Shao-hua, XU Ying-zi, YAO Hai-lin, LU Zheng, LI Zhi-yong, DONG Cheng,. Model test study of constraint to deformation of expansive soil by anchor reinforced vegetation system [J]. , 2017, 38(S1): 158-166.
[11] WU Jun-hua, YANG Song,. Experimental study of matric suction measurement and its impact on shear strength under drying-wetting cycles for expansive soils [J]. , 2017, 38(3): 678-684.
[12] DENG You-sheng, WU Peng, ZHAO Ming-hua, DUAN Bang-zheng,. Strength of expansive soil reinforced by polypropylene fiber under optimal water content [J]. , 2017, 38(2): 349-353.
[13] WU Qing-hua, ZHANG Jia-fa, CUI Hao-dong, ZHU Guo-sheng, LIU Xi-yin,. Experimental study of drainage control of slopes with fine-coarse grain structure [J]. , 2017, 38(2): 392-399.
[14] LI Jing-jing, KONG Ling-wei, MU Kun, . In-situ borehole shear test on expansive soil and its strength characteristics [J]. , 2017, 38(2): 453-461.
[15] ZHENG Jun-jie, GUO Zhen-shan, CUI Lan, ZHANG Jun,. Stability analysis of expansive soil tunnel considering unsaturated seepage and moistening swelling deformation [J]. , 2017, 38(11): 3271-3277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LAN Si-qing, WANG Yu-lin, XIE Kang-he. Mathematical model and analytical solutions of soft soil consolidation with both way drainages in radial directions[J]. , 2009, 30(12): 3871 -3875 .
[2] SHAO Sheng-jun,ZHENG Wen,WANG Zheng-hong,WANG Shuai. Structural index of loess and its testing method[J]. , 2010, 31(1): 15 -19 .
[3] HUANG Qing-xiang, ZHANG Pei, DONG Ai-ju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. , 2009, 30(9): 2722 -2726 .
[4] WANG Yang, TANG Xiong-jun, TAN Xian-kun, WANG Yuan-han. Mechanism analysis of floor heave in Yunling Tunnel[J]. , 2010, 31(8): 2530 -2534 .
[5] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[6] XIA Yuan-you, YE Hong, LIU Xiao-he, CHEN Jie. Analysis of shear stress along pressure-type anchorage cable in weathered rock mass[J]. , 2010, 31(12): 3861 -3866 .
[7] CHEN Xu-guang,ZHANG Qiang-yong. Mechanism analysis of phenomenon of zonal disintegration in deep tunnel model test under high geostress[J]. , 2011, 32(1): 84 -90 .
[8] ZHANG Jun-feng , GUO Ying. Experimental research on effect of orientation of principal stress and initial sampling water content on monotonic shear behavior of saturated remolding silt[J]. , 2011, 32(S2): 324 -328 .
[9] WEI Ying-le , LIU Li-yun , GE Hai-yu. Nonlinear method for determining shear strength of slope rock mass[J]. , 2012, 33(2): 395 -401 .
[10] TANG Ren-hua, CHEN Chang-fu. Analysis and calculation method of reliability of anchored retaining wall[J]. , 2012, 33(5): 1389 -1394 .