›› 2007, Vol. 28 ›› Issue (8): 1665-1670.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

A new earth reinforcement method by soilbags

LIU Si-hong1, MATSUOKA Hajime2   

  1. 1. Hohai University, Nanjing 210098, China; 2. Nagoya Institute of Technology, Nagoya 466-8555, Japan
  • Received:2005-09-07 Online:2007-08-10 Published:2013-10-15

Abstract: The reinforcement principle and some properties of soilbags are introduced. Some practical application cases of soilbags in Japan, such as the reinforcement of building and road foundations, the construction of retaining wall and debris-diversion embankment, are presented. The reinforcement of soilbags is contributed by a tensile force, which thereafter induced an apparent cohesion. The tensile force is produced due to the extension of the perimeter of soilbag under the application of external force.

Key words: soilbag, reinforcement, foundation, application case

CLC Number: 

  • TU 472
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] ZOU You-xue, WANG Rui, ZHANG Jian-mi, . Analysis on the seismic response of stone columns composite foundation in liquefiable soils [J]. Rock and Soil Mechanics, 2019, 40(6): 2443-2455.
[2] LI Xiu-lei, LI Jin-feng, SHI Jian-yong, . Elastoplastic constitutive model for municipal solid waste considering the effect of fibrous reinforcement [J]. Rock and Soil Mechanics, 2019, 40(5): 1916-1924.
[3] YU Yu, LIU Xin-rong, LIU Yong-quan, . Field experimental investigation on prestress loss law of anchor cable in foundation pits [J]. Rock and Soil Mechanics, 2019, 40(5): 1932-1939.
[4] TANG Xiao-wu, YANG Xiao-qiu, YU Yue. Analytical solutions to drained consolidation of porous pipe pile [J]. Rock and Soil Mechanics, 2019, 40(4): 1248-1254.
[5] MA Wen-guan, LIU Run, LIAN Ji-jian, GUO Shao-zeng. The study of penetration resistance of bucket foundation in silt [J]. Rock and Soil Mechanics, 2019, 40(4): 1307-1312.
[6] YIN Feng, ZHOU Hang, LIU Han-long, CHU Jian, . Experimental investigation on dynamic characteristics of XCC pile-geogrid composite foundation under static and dynamic loads of vehicles [J]. Rock and Soil Mechanics, 2019, 40(4): 1324-1330.
[7] JIN Dan-dan, WANG Su, LI Chuan-xun. Analysis of consolidation of natural heterogeneous soils with a threshold hydraulic gradient [J]. Rock and Soil Mechanics, 2019, 40(4): 1433-1440.
[8] ZHONG Guo-qiang, WANG Hao, KONG Li, WANG Cheng-tang, . Evaluation of the possibility of foundation pit collapse with " diaphragm wall+ support" based on T-S fuzzy fault tree [J]. Rock and Soil Mechanics, 2019, 40(4): 1569-1576.
[9] GAO Jun, DANG Fa-ning, LI Hai-bin, YANG Chao, REN Jie, . Simplified analytical force analysis model of asphalt concrete core [J]. Rock and Soil Mechanics, 2019, 40(3): 971-977.
[10] LUO Lin-ge, CUI Li-chuan, SHI Hai-yang, GUO Chao, YI Shao-ping, . Experimental study of bearing capacity of underground diaphragm wall-gravity anchorage composite foundation [J]. Rock and Soil Mechanics, 2019, 40(3): 1049-1058.
[11] TAN Guo-hong, XIAO Hai-zhu, DU Xun, HU Wen-jun. Settlement analysis of caisson foundation under main tower of a long span cable-stayed bridge for highway and railway [J]. Rock and Soil Mechanics, 2019, 40(3): 1113-1120.
[12] RUI Rui, SUN Yi, ZHU Yong, WU Duan-zheng, XIA Yuan-you, . Mesoscopic working mechanism of cushion of composite foundation under rigid slab [J]. Rock and Soil Mechanics, 2019, 40(2): 445-454.
[13] LIU Fang-cheng, WU Meng-tao, YANG Jun, . Experimental study of strength characteristics of geogrid reinforced rubber sand mixtures [J]. Rock and Soil Mechanics, 2019, 40(2): 580-591.
[14] LI Lin, LI Jing-pei, SUN De-an, GONG Wei-bing , . Nonlinear load-settlement analysis of pile groups considering pile installation effects [J]. Rock and Soil Mechanics, 2019, 40(2): 668-677.
[15] LEI Da, JIANG Guan-lu, SUN Sheng-jie, QI Zhi-hui, LI An-hong, . Study of bridge foundation on slope reinforced by anti-slide piles on shaking table [J]. Rock and Soil Mechanics, 2019, 40(1): 127-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN De-an, ZHEN Wen-zhan. Numerical simulations of shear bands along different stress paths[J]. , 2010, 31(7): 2253 -2258 .
[2] XUE Jing-chun,LI Xi-bing,DONG Long-jun. Study of rock slope stability based on clustering uncertained measurement complicated algorithm[J]. , 2010, 31(S1): 293 -297 .
[3] LI Wei-hua, ZHAO Cheng-gang. Analysis of seismic dynamic response of layered alluvial valleys with soft interlayer[J]. , 2009, 30(1): 45 -51 .
[4] LIU Wen-bai,ZHOU Jian. Experimental research on interface friction of geogrids and soil[J]. , 2009, 30(4): 965 -970 .
[5] SHEN Hai-chao, CHENG Yuan-fang, ZHAO Yi-zhong, ZHANG Jian-guo, XIA Yuan-bo. Research on in-situ stresses and borehole stability of coal seam in Jingbian gas field[J]. , 2009, 30(S2): 123 -126 .
[6] YANG Xiao, CAI Xue-qiong. Vertical vibration of pile in saturated viscoelastic soil layer considering transversal effects[J]. , 2011, 32(6): 1857 -1863 .
[7] MA Gang , CHANG Xiao-lin , ZHOU Wei , ZHOU Chuang-bing . Deep anti-sliding stability analysis of gravity dam based on Cosserat continuum theory[J]. , 2012, 33(5): 1505 -1512 .
[8] CAI Hai-bing ,PENG Li-min ,ZHENG Teng-long . A duration prediction model of surface frost heave induced by tunnelling with horizontal freezing method[J]. , 2012, 33(6): 1761 -1768 .
[9] JIANG An-nan ,LI Peng ,TANG Shu-lin ,WANG Jun-xiang . Development and application of tunnel back analysis visual platform based on DE-FEM[J]. , 2012, 33(8): 2507 -2512 .
[10] HOU Yong-mao , YANG Guo-xiang , GE Xiu-run , ZHENG Yi-feng , GU Chen-ying . Study of distribution properties of water and earth pressure at excavation face and in chamber of earth pressure balance shield with super-large diameter[J]. , 2012, 33(9): 2713 -2718 .