›› 2007, Vol. 28 ›› Issue (9): 1866-1870.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Test study on post-liquefaction deformation behavior of silt ground

LIU Han-long1 , ZENG Chang-nü2ZHOU Yun-dong1   

  1. 1.Institute of Geotechnical Engineering, Hohai University, Nanjing 210098,China ; 2. Department of Civil Engineering and Architecture, Henan University of Techonology, Zhengzhou 450052, China
  • Received:2005-09-21 Online:2007-09-10 Published:2013-10-15

Abstract: A series of tests have been conducted to simulate post-liquefaction behavior of silt in a new universal triaxial torsional shear apparatus of Hohai University. Such effects on post-liquefaction of silt as soil dry density, severity of liquefaction, pre-vibration, non-regular vibration are discussed. It is found that post-liquefaction strain is composed of and . The bigger dry density is the larger and the larger shear modulus are during the stage of The more serious of liquefaction is, the larger is. But there is no difference of shear modulus during the stage of , when severity of liquefaction change. The pre-vibration and non-regular vibration affects slightly on post-liquefaction stress-strain relationship. A new post-liquefaction model of liquefied silt is proposed based on test results. And how to obtain parameters of the model is also introduced. The results predicted by the proposed method are consistent well with the experiment observation.

Key words: silt, post-liquefaction, lab test, stress-strain relationship

CLC Number: 

  • TU 411
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] MO Zhen-ze, WANG Meng-shu, LI Hai-bo, QIAN Yong-jin, LUO Gen-dong, WANG Hui, . Laboratory investigation on pore water pressure variation caused by filter cake effect during slurry-EPB shield tunneling in silty sand layer [J]. Rock and Soil Mechanics, 2019, 40(6): 2257-2263.
[2] MA Wen-guan, LIU Run, LIAN Ji-jian, GUO Shao-zeng. The study of penetration resistance of bucket foundation in silt [J]. Rock and Soil Mechanics, 2019, 40(4): 1307-1312.
[3] LIU Jia-shun, WANG Lai-gui, ZHANG Xiang-dong, LI Xue-bin, ZHANG Jian-jun, REN Kun, . Cyclic triaxial test on saturated silty clay under partial drainage condition with variable confining pressure [J]. Rock and Soil Mechanics, 2019, 40(4): 1413-1419.
[4] ZHU Yu-meng, WU Qi, CHEN Guo-xing, . Experimental investigation on shear wave velocity of sand-silt mixtures based on the theory of inter-grain contact state [J]. Rock and Soil Mechanics, 2019, 40(4): 1457-1464.
[5] WEI Xing, ZHANG Zhao, WANG Gang, ZHANG Jian-min, . DEM study of mechanism of large post-liquefaction deformation of saturated sand [J]. Rock and Soil Mechanics, 2019, 40(4): 1596-1602.
[6] HU Tian-fei, LIU Jian-kun, WANG Tian-liang, YUE Zu-run, . Effect of freeze-thaw cycles on deformation characteristics of a silty clay and its constitutive model with double yield surfaces [J]. Rock and Soil Mechanics, 2019, 40(3): 987-997.
[7] ZHU Ning , ZHOU Yang , LIU Wei, SHI Pei-xin, WU Ben,. Study of silty soil behavior disturbed for installation of diaphragm wall in Suzhou [J]. , 2018, 39(S1): 529-536.
[8] ZHANG De,LIU En-long,LIU Xing-yan,SONG Bing-tang, . Investigation on strength criterion for frozen silt soils [J]. , 2018, 39(9): 3237-3245.
[9] LIU Jia-shun, ZHANG Xiang-dong, SUN Jia-bao, YANG Jian-jun, FANG Tian-jian. Experimental study on the pore pressure and deformation of saturated silty clay under K0 consolidation and principal stress axis rotation [J]. , 2018, 39(8): 2787-2794.
[10] LIU Song-yu, CAO Jing-jing, CAI Guang-hua, . Microstructural mechanism of reactive magnesia carbonated and stabilized silty clays [J]. , 2018, 39(5): 1543-1552.
[11] LI Zhi-gang, XU Guang-li, HUANG Peng, ZHAO Xin, FU Yong-peng, SU Chang,. Mechanical and anisotropic properties of silty slates [J]. , 2018, 39(5): 1737-1746.
[12] ZOU You-xue, WANG Rui, ZHANG Jian-min, . Implementation of a plasticity model for large post-liquefaction deformation of sand in FLAC3D [J]. , 2018, 39(4): 1525-1534.
[13] XIONG Yong, LUO Qiang, ZHANG Liang, JIANG Liang-wei, ZHU Jiang-jiang, . Analysis of deformation time effect of silt clay filler in K30 loading process [J]. , 2018, 39(3): 863-871.
[14] JIANG Jing-shan, CHENG Zhan-lin, ZUO Yong-zhen, DING Hong-shun,. Effect of dry density on mechanical properties of rockfill materials [J]. , 2018, 39(2): 507-514.
[15] LI Lian-xiang, FU Qing-hong, HUANG Jia-jia, . Centrifuge model tests on cantilever foundation pit engineering in sand ground and silty clay ground [J]. , 2018, 39(2): 529-536.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Qiong, TANG Hui-ming, WANG Liang-qing, LIN Zhi-hong. Analytic solutions for phreatic line in reservoir slope with inclined impervious bed under rainfall and reservoir water level fluctuation[J]. , 2009, 30(10): 3025 -3031 .
[2] HE Fa-guo, CHEN Wen-wu, HAN Wen-feng, ZHANG Jing-ke. Correlation of microstructure indices and performance of sand solidified with polymer material SH[J]. , 2009, 30(12): 3803 -3807 .
[3] QI Ji-lin,MA Wei. State-of-art of research on mechanical properties of frozen soils[J]. , 2010, 31(1): 133 -143 .
[4] ZHUANG Ning, ZHU Ku-zhu, LI Jun-wei. Research on partial pressure joint arch tunnel’s dynamic simulation and optimum analysis of construction process[J]. , 2009, 30(9): 2875 -2880 .
[5] SHANG Shou-ping, SUI Xiao-xi, ZHOU Zhi-jin, LIU Fang-cheng, XIONG Wei. Study of dynamic shear modulus of granulated rubber-sand mixture[J]. , 2010, 31(2): 377 -381 .
[6] JIANG Hao,WANG Ren,Lü Ying-hui,MENG Qing-shan. Test study of model pile in calcareous sands[J]. , 2010, 31(3): 780 -784 .
[7] ZHOU Yong-xi, ZHANG De-xuan, LUO Chun-yong, CHEN Jun. Experimental research on steady strength of saturated loess[J]. , 2010, 31(5): 1486 -1490 .
[8] TIAN Qi-qiang,HOU Xing-min,WANG Zi-fa. A new method of subsoil damping ratio identification based on free vibration of a massive concrete foundation[J]. , 2011, 32(1): 211 -216 .
[9] CHAI Bo, YIN Kun-long, CHEN Li-xia, LI Yuan-yao. Analysis of slope deformation under control of rock mass structure[J]. , 2009, 30(2): 521 -525 .
[10] YANG You-zhen, GE Xiu-run, HUANG Ming. Hamilton system and symplectic algorithm for space foundation[J]. , 2009, 30(2): 536 -541 .