›› 2007, Vol. 28 ›› Issue (9): 1861-1865.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Expansive soil embankment stability and geogrid treatment effect analysis with strength zoning method

HU Ming-jian, KONG Ling-wei, GUO Ai-guo, LIU Guan-shi   

  1. Key Laboratory of Rock and Soil Mechanics,Chinese Academy of Sciences,Wuhan 430071,China
  • Received:2006-08-21 Online:2007-09-10 Published:2013-10-15

Abstract: In the whole expansive soil embankment, there exist different strength zones due to different water content and dry densitiy caused by the construction course, atmosphere and rainfall. Soil strength in the surface zones usually be strongly attenuated by the alternately wetting and drying, expanding and shrinking. But this condition usually is ignored in the embankment stability analysis. Strength zoning method takes the climate and weather into consideration. Based on the strength zoning method, expansive soil embankment stability and geogrid treatment effect analysis results show that the expansive soil embankment will easily slide in superficial layer if the embankment is constructed by full expansive soils. Stability will increase if the embankment be constructed by lime modified expansive soil, but the emergency capecity is insufficient and the incipient fault is also existence. Superficial stability will increase evidently while the resistance to overturning only increase a little if embankment being treated by geogrid, incipient fault has been effectually reduced or eradicated. All of these show the superiority of the strength zoning method for expansive soil embankment stability analysis.

Key words: strength zoning, expansive soil embankment, resistance to overturning, superficial stability, geogrid

CLC Number: 

  • TU 443
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] YIN Feng, ZHOU Hang, LIU Han-long, CHU Jian, . Experimental investigation on dynamic characteristics of XCC pile-geogrid composite foundation under static and dynamic loads of vehicles [J]. Rock and Soil Mechanics, 2019, 40(4): 1324-1330.
[2] WANG Jia-quan, ZHANG Liang-liang, LAI Yi, LU Meng-liang, YE Bin, . Large-scale model tests on static and dynamic mechanical characteristics of reinforced earth retaining wall [J]. Rock and Soil Mechanics, 2019, 40(2): 497-505.
[3] LIU Fang-cheng, WU Meng-tao, YANG Jun, . Experimental study of strength characteristics of geogrid reinforced rubber sand mixtures [J]. Rock and Soil Mechanics, 2019, 40(2): 580-591.
[4] WANG Jun, SHI Jing, LIU Fei-yu, CAI Yuan-qiang, . Effect of particle gradation on static and dynamic direct shear properties of geogrid-sand interface [J]. Rock and Soil Mechanics, 2019, 40(1): 109-117.
[5] WANG Yi-min, YAN Cen, YU Heng, LI Qi. Experimental study of soil stress characteristics of geogrid-reinforced widened embankment under static loadings [J]. , 2018, 39(S1): 311-317.
[6] WANG Jia-quan, ZHANG Liang-liang, LIU Zheng-quan, ZHOU Yuan-wu. Large model test on geogrid reinforced sand soil foundation under dynamic loading [J]. , 2018, 39(10): 3539-3547.
[7] WANG Zhi-jie, FELIX JACOBS, MARTIN ZIEGLER,. Influence of geogrid transverse members on strength and deformation behavior of reinforced granular soil [J]. , 2017, 38(8): 2234-2240.
[8] WANG Jia-quan, ZHOU Yue-fu, TANG Xian-yuan, HUANG Shi-bin,. Development and application of large size direct shear test apparatus with visual and digital collection functions for reinforced soil [J]. , 2017, 38(5): 1533-1540.
[9] ZHENG Jun-jie, CAO Wen-zhao, ZHOU Yan-jun, JIANG Jin-guo. Pull-out test study of interface behavior between triaxial geogrid and soil [J]. , 2017, 38(2): 317-324.
[10] WANG Zong-jian, MA Shu-wen, LU Liang,. Study of reinforced soil adjusted to differential settlement based on parabolic cable theory [J]. , 2017, 38(11): 3319-3324.
[11] LIU Fei-yu, WANG Pan, WANG Jun, CAI Yuan-qiang,. Influence of soil particle size on monotonic and cyclic direct shear behaviors of geogrid-soil interface [J]. , 2017, 38(1): 150-156.
[12] CHEN Jun, FU Wen-xi, DAI Feng, DENG Jian-hui. Mechanical behaviors of bamboo geogrid in reinforcing filling embankment [J]. , 2017, 38(1): 174-179.
[13] WANG He , YANG Guang-qing , XIONG Bao-lin , WU Lian-hai , LIU Hua-bei,. An experimental study of the structural behavior of reinforced soil retaining wall with concrete-block panel [J]. , 2016, 37(2): 487-498.
[14] CAI Jian-tao. Pull-out test on interface behavior between expansive soils and geogrids [J]. , 2015, 36(S1): 204-208.
[15] JIA Min-cai , QIANG Xiao , YE Jian-zhong,. Comparison study of reinforcement effect of HDPE/PET geogrids in fill embankment [J]. , 2015, 36(S1): 491-495.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] JIANG Ling-fa, CHEN Shan-xiong, YU Zhong-jiu. Scattering around a liner of arbitrary shape in saturated soil under dilatational waves[J]. , 2009, 30(10): 3063 -3070 .
[2] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] GAO Yang, ZHANG Qing-song, XU Bang-shu, LI Wei. Study of mining roof abutment pressure distribution law and affecting factors under sea[J]. , 2010, 31(4): 1309 -1313 .
[5] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[6] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[7] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[8] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[9] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .
[10] SHEN Hai-chao, CHENG Yuan-fang, ZHAO Yi-zhong, ZHANG Jian-guo, XIA Yuan-bo. Research on in-situ stresses and borehole stability of coal seam in Jingbian gas field[J]. , 2009, 30(S2): 123 -126 .