›› 2007, Vol. 28 ›› Issue (S1): 1-10.

• Fundamental Theroy and Experimental Research •     Next Articles

Research on creep and consolidation characteristics of soft soil

CHEN Xiao-ping1, ZHOU Qiu-juan1, ZHU Hong-hu2, ZHANG Bo3   

  1. 1. Department of Mechanics and Civil Engineering, Jinan University, Guangzhou 510632, China; 2. Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hong Kong, China; 3. Changjiang Institute of Survey, Planning, Design and Research, Changjiang Water Resources Commission, Wuhan 430010, China
  • Received:2007-04-20 Online:2007-10-25 Published:2014-03-28

Abstract: Based on the mass of contrast tests, creep consolidation characteristics and calculating models of typical soft soil from Guangdong are systematically studied. The test results show that the deformation proportion of consolidation and secondary consolidation is related to the factors including initial load and loading ration in test, consolidation degree, water content and void ratio of soil samples. The complications of affecting secondary consolidation coefficient are loading history, loading ration and current consolidation state of soft soil. Preloading can reduce secondary consolidation coefficient. The scale between second consolidation coefficient and compression index is constant, about 0.025-0.10. Direct shear-creep characteristic is related to vertical consolidation pressure; and the creep rule presents strain hardening characteristics. Consolidation action can play down the creep effect, so the creep characteristic in triaxial test is connected with drainage condition. In coordination loading addition, the relationship between deviator stress and axial strain is nearly straight-line in CD test; but in CU test, it assumes nonlinear and there is visible yield characteristics. When the continuous loading manner is adopted in UU test, the failure strength will be improved. Bases of above results, the models of creep and consolidation are analyzed considering respectively nonlinear constitutive relationship and shear drainage condition.

Key words: creep consolidation, contrast tests, soft soil, calculation model

CLC Number: 

  • TU 411
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] ZHANG Kui, ZHAO Cheng-gang, LI Wei-hua. Study of the seismic response of the seafloor ground containing soft soil [J]. Rock and Soil Mechanics, 2019, 40(6): 2456-2468.
[2] PU He-fu, SONG Ding-bao, ZHENG Jun-jie, ZHOU Yang, YAN Jing, LI Zhan-yi. Non-linear self-weight consolidation model of saturated soft soil under large-strain condition [J]. Rock and Soil Mechanics, 2019, 40(5): 1683-1692.
[3] XIA Chang-qing, HU An-feng, CUI Jun, Lü Wen-xiao, XIE Kang-he, . Analytical solutions for one-dimensional nonlinear consolidation of saturated soft layered soils [J]. , 2018, 39(8): 2858-2864.
[4] TANG Ran, XU Qiang, WU Bing, FAN Xuan-mei,. Method of sliding distance calculation for translational landslides [J]. , 2018, 39(3): 1009-1019.
[5] SONG Jing, YE Guan-lin, XU Yong-fu, SUN De-an,. Numerical simulation of long-term settlement of structural soft soil subgrade considering consolidation history [J]. , 2018, 39(3): 1037-1046.
[6] ZHANG Bing-qiang, WANG Qi-yun, LU Xiao-ying, . Analytical solution for non-Darcian seepage field of a shallow circular tunnel in soft soil [J]. Rock and Soil Mechanics, 2018, 39(12): 4377-4384.
[7] LI Chuan-xun, WANG Su. An analytical solution for one-dimensional nonlinear consolidation of soft soil [J]. , 2018, 39(10): 3548-3554.
[8] XIAO Zhong, WANG Yan, WANG Yuan-zhan, LIU Ying, . Effect of bucket separation distance on bearing capacity of tetrapod bucket foundations and determination of optimal separation distance [J]. , 2018, 39(10): 3603-3611.
[9] YUE Zhe, YE Yi-cheng, WANG Qi-hu, YAO Nan, SHI Yao-bin. A model for calculation of compressive strength of rock-like materials based on dimensional analysis [J]. , 2018, 39(1): 216-221.
[10] HU Ming-jian, JIANG Hang-hai, CUI Xiang, RUAN Yang, LIU Hai-feng, ZHANG Chen-yang,. Preliminary study of conductivity and correlation problems of calcareous sand [J]. , 2017, 38(S2): 158-162.
[11] YI Qing-lin, ZHAO Neng-hao, LIU Yi-liang, . Model of landslide stability calculation based on energy conservation [J]. , 2017, 38(S1): 1-10.
[12] WANG Jin, ZHU Ze-qi, CHEN Jian, FU Xiao-dong, FANG Qiang, . Study of in-situ mechanical properties of littoral deposit soft soil by self-boring pressuremeter [J]. , 2017, 38(S1): 195-202.
[13] ZHANG Dong-mei, GAO Cheng-peng, YIN Zhen-yu, WANG Ru-lu, YANG Tian-liang,. Particle flow simulation of seepage erosion around shield tunnel [J]. , 2017, 38(S1): 429-438.
[14] LI Hong-jiang , TONG Li-yuan, LIU Song-yu, GU Ming-fen, LU Zhan-qiu,. Displacement standards for lateral capacity of rigid pile and flexible pile in soft soil foundation [J]. , 2017, 38(9): 2676-2682.
[15] LIU Shu-jia, BAI Ting-hui, LIAO Shao-ming, CHEN Li-sheng,. Experimental analysis of delay effect of construction parameters of shield tunnel on soil displacement in soft soil area [J]. , 2017, 38(3): 857-865.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Yi-hu, ZHOU Huo-ming, WU Ai-qing. Post processing of discontinuity network modeling result[J]. , 2009, 30(9): 2855 -2861 .
[2] YANG Guang, SUN Xun, YU Yu-zhen, ZHANG Bing-yin. Experimental study of mechanical behavior of a coarse-grained material under various stress paths[J]. , 2010, 31(4): 1118 -1122 .
[3] WANG Zhe-chao, LI Shu-cai. One-dimensional mechanical behavior of granular material under high stresses(Part I): compression behavior[J]. , 2010, 31(10): 3051 -3057 .
[4] LIU Jian-guo, SUN Qi-cheng, JIN Feng, XIN Hai-li. Review of contact force measurements in granular materials[J]. , 2009, 30(S1): 121 -128 .
[5] ZHANG Le-wen, QIU Dao-hong, LI Shu-cai, ZHANG De-yong. Study of tunnel surrounding rock classification based on rough set and ideal point method[J]. , 2011, 32(S1): 171 -175 .
[6] DONG Jin-yu , YANG Ji-hong , SUN Wen-huai , HUANG Zhi-quan , WANG Dong , YANG Guo-xiang. Prediction of deformation and failure of a large-scale deposit slope during reservoir water level fluctuation[J]. , 2011, 32(6): 1774 -1780 .
[7] BING Hui , HE Ping. Experimental study of water and salt redistributions of saline soil with different freezing modes[J]. , 2011, 32(8): 2307 -2312 .
[8] ZHANG Gui-min , LI Yin-ping , SHI Xi-lin , YANG Chun-he , WANG Li-juan. Research on a model material preparation method for alternate layered rock mass and preliminary experiment[J]. , 2011, 32(S2): 284 -289 .
[9] DING Zu-de,PENG Li-min,SHI Cheng-hua. Analysis of influence of metro tunnel crossing angles on ground buildings[J]. , 2011, 32(11): 3387 -3392 .
[10] SUN Feng, FENG Xia-ting, ZHANG Chuan-qing, ZHOU Hui, QIU Shi-li. Stability estimation method of greenschist tunnel based on increasing-decreasing energy method[J]. , 2012, 33(2): 467 -475 .