›› 2007, Vol. 28 ›› Issue (S1): 619-622.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Influence of stress paths on rockfill’s deformation characteristics

LI Jin-feng1,2, YANG Qi-gui2, XU Wei-ya1   

  1. 1. Research Insitute of Geotechnical Engineering, Hohai University, Nanjing 210098,China; 2.Changjiang Institute of Survey, Planning, Design and Research, Changjiang Water Resources Commission, Wuhan 430010, China
  • Received:2007-04-22 Online:2007-10-25 Published:2014-03-28

Abstract: In this paper,the analog simulation on the stress-deformation characteristic of one high concrete face rockfill dam is carried out. The conclusion obtained from the finite element analysis shows that the great influence of stress paths on rockfill’s deformation characteristics is reflected by Duncan E-B model and mid-point incremental method. The rockfill’s deformation is related to load mode, and same stress level and different stress path, rockfill’s deformation is different; optimized load path is important to control rockfill’s deformation for stage filling rockfill dam.

Key words: stress path method, stress deformation, concrete slab rockfill slab, rockfill

CLC Number: 

  • TU 431
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] KONG Xian-jing, NING Fan-wei, LIU Jing-mao, ZOU De-gao, ZHOU Chen-guang, . Influences of stress paths and saturation on particle breakage of rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(6): 2059-2065.
[2] WANG Tao, LIU Si-hong, ZHENG Shou-ren, LU Yang, . Experimental study of compression characteristics of rockfill materials with composite grout [J]. Rock and Soil Mechanics, 2019, 40(4): 1420-1426.
[3] SHENG Yun-feng, CHEN Yuan, ZHOU Wei, MA Gang, CHANG Xiao-lin, . Dynamic response analysis of rockfill dam based on modified dynamic shear modulus model [J]. Rock and Soil Mechanics, 2018, 39(S2): 405-414.
[4] LI Yang, SHE Cheng-xue, ZHU Huan-chun, . Simulation and verification of particle flow of vibration rolling compaction of field rockfill [J]. Rock and Soil Mechanics, 2018, 39(S2): 432-442.
[5] ZHOU Xiong-xiong, CHI Shi-chun, JIA Yu-feng, XIE Yun-fei, . Detailed simulation method for filling process of high earth and rockfill dams [J]. Rock and Soil Mechanics, 2018, 39(S2): 443-450.
[6] WEI Kuang-min , CHEN Sheng-shui, LI Guo-ying, WU Jun-jie, . Influence of contact effect between dam body and dam foundation on behaviours of high concrete faced rockfill dam built in steep valleys [J]. , 2018, 39(9): 3415-3424.
[7] LI Yang, SHE Cheng-xue. Numerical simulation of effect of size on crushing strength of rockfill grains using particle flow code [J]. , 2018, 39(8): 2951-2959.
[8] YANG Gui, SUN Xin, WANG Yang-yang, . Tests on resilient behaviour of polymer rockfill materials [J]. , 2018, 39(5): 1669-1674.
[9] LIU Guo-ming, CHEN Ze-qin, WU Le-hai. Improvement of Gudehus-Bauer hypoplastic constitutive model for rockfill materials and the determination of model parameters [J]. , 2018, 39(3): 823-830.
[10] JIANG Jing-shan, CHENG Zhan-lin, ZUO Yong-zhen, DING Hong-shun,. Effect of dry density on mechanical properties of rockfill materials [J]. , 2018, 39(2): 507-514.
[11] WU Zhen-yu, CHEN Jian-kang. Method of reliability analysis of stability for soil slope and its application in high soil and rockfill dams [J]. , 2018, 39(2): 699-704.
[12] KONG Xian-jing, ZHU Fa-yong, LIU Jing-mao, ZOU De-gao, NING Fan-wei, . Stress dilatancy of rockfill material under different loading directions [J]. , 2018, 39(11): 3915-3920.
[13] ZOU De-gao, TIAN Ji-rong, LIU Jing-mao, ZHOU Chen-guang, NING Fan-wei,. Three-dimensional shape of rockfill material and its influence on particle breakage [J]. , 2018, 39(10): 3525-3530.
[14] LIU Tian-xiang, WANG Zhong-fu, . Analysis of interaction when tunnel orthogonal crossing deep-seated landslide and the corresponding control measures [J]. , 2018, 39(1): 265-274.
[15] ZOU De-gao, LIU Suo, CHEN Kai, KONG Xian-jing, YU Xiang,. Static and dynamic analysis of seismic response nonlinearity for geotechnical engineering using quadtree mesh and polygon scaled boundary finite element method [J]. , 2017, 38(S2): 33-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Bin, LI Shu-cai, LI Shu-chen, ZHONG Shi-hang. Study of advanced detection of water-bearing geological structures with DC resistivity method[J]. , 2009, 30(10): 3093 -3101 .
[2] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[3] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[4] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[5] LONG Wan-xue, CHEN Kai-sheng, XIAO Tao, PENG Xiao-ping. Research of general triaxial test for unsaturated red clay[J]. , 2009, 30(S2): 28 -33 .
[6] DU Yan-jun, FAN Ri-dong. Compressibility and permeability behavior of two types of amended soil-bentonite vertical cutoff wall backfills[J]. , 2011, 32(S1): 49 -54 .
[7] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .
[8] YUAN Jing-qiang , CHEN Wei-zhong , TAN Xian-jun , WANG Hui. Mesomechanical simulation of grouting in weak strata[J]. , 2011, 32(S2): 653 -659 .
[9] CHEN Pan,WEI Chang-fu,WANG Ji-li,YI Pan-pan,CAO Hua-feng. Numerical analysis of seepage processes in unsaturated porous media under nearly saturated conditions[J]. , 2012, 33(1): 295 -300 .
[10] GENG Xue-yu , YU Jie . Biot consolidation of a transversely isotropic soil layer under traffic loading[J]. , 2012, 33(5): 1366 -1374 .