›› 2007, Vol. 28 ›› Issue (S1): 901-904.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis on vertical bearing capacity of end-bearing pile foundation based on the catastrophe theory

ZHANG Yuan-fang1, 2, CUI Shu-qin3   

  1. 1. Hydraulic and Civil Engineering College of Xinjiang Agricultural University, Urumqi 830052, China; 2. Geotechnical Institute of Civil Engineering College, Hohai University, Nanjing 210098, China; 3. Department of Civil Engineering, Tongling Institute, Tongling 244000, China
  • Received:2007-05-30 Online:2007-10-25 Published:2014-03-28

Abstract: There are a number of solutions to vertical ultimate bearing capacity of single pile, but so far a feasible and economical method of determining the vertical ultimate bearing capacity of single pile has not been presented. So based on the cusp catastrophe theory, the calculating formula of the vertical ultimate bearing capacity of single pile is deduced in this paper by means of static loading test and parabola method. A case history proved that the calculation results are in accordance with the measured results well when the value of the deformation of piles is small, while when the value of that is big, the calculation results will deviate from the measured results. The inference in this paper can apply to practice.

Key words: stability analysis, vertical bearing capacity, end-bearing pile, catastrophe theory, cusp catastrophe

CLC Number: 

  • TU 443
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
[2] QIN Yu-qiao, TANG Hua, FENG Zhen-yang, YIN Xiao-tao, WANG Dong-ying, . Slope stability evaluation by clustering analysis [J]. , 2018, 39(8): 2977-2983.
[3] LI Qing-chuan, LI Shu-cai, WANG Han-peng, ZHANG Hong-jun,ZHANG Bing, ZHANG Yu-qiang,. Stability analysis and numerical experiment study of excavation face for tunnels overlaid by quicksand stratum [J]. , 2018, 39(7): 2681-2690.
[4] ZHANG Hai-tao, LUO Xian-qi, SHEN Hui, BI Jin-feng. Vector-sum-based slip surface stress method for analysing slip mass stability [J]. , 2018, 39(5): 1691-1698.
[5] LI Ning, GUO Shuang-feng, YAO Xian-chun,. Further study of stability analysis methods of high rock slopes [J]. , 2018, 39(2): 397-406.
[6] XIA Kai-zong, CHEN Cong-xin, SONG Xu-gen, LIU Xiu-min, ZHOU Yi-chao, . Analysis of catastrophic failure mechanism of roof bed in gypsum mines induced by relative humidity [J]. , 2018, 39(2): 589-597.
[7] ZHU Yan-peng, YANG Xiao-yu, MA Xiao-rui, YANG Xiao-hui, YE Shuai-hua, . Several questions of double reduction method for slope stability analysis [J]. , 2018, 39(1): 331-338.
[8] REN Lian-wei, GU Hong-wei, PENG Huai-feng, ZHOU Yang,. Research on bearing capacity of belled wedge pile model under three working conditions [J]. , 2017, 38(7): 1887-1893.
[9] NIE Zhi-bao, ZHENG Hong, ZHANG Tan. Determination of slope critical slip surfaces using strength reduction method and wavelet transform [J]. , 2017, 38(6): 1827-1831.
[10] ZHANG Kun, XU Qing, WANG Yi-fan, A Hu-bao. Application of self-adaptive differential evolution algorithm in searching for critical slip surface of slope [J]. , 2017, 38(5): 1503-1509.
[11] FU Gui-jun, ZHANG Si-yuan, ZHANG Yu-jun. A rheological model for dual-pore-fracture rock mass and its application to finite element analysis of underground caverns [J]. , 2017, 38(2): 601-609.
[12] DENG Dong-ping, LI Liang. Three-dimensional limit equilibrium method for slope stability based on assumption of stress on slip surface [J]. , 2017, 38(1): 189-196.
[13] ZHOU Yong, WANG Zheng-zhen, . Improvement of internal stability analysis method of soil nailing wall [J]. , 2016, 37(S2): 356-362.
[14] HAN Long-qiang, WU Shun-chuan, LI Zhi-peng, . Study of non-proportional strength reduction method based on Hoek-Brown failure criterion [J]. , 2016, 37(S2): 690-696.
[15] SONG Zi-heng, YANG Qiang, LIU Yao-ru. Elastoplastic model for geomaterial considering effect of pore water pressure and its finite elements implementation [J]. , 2016, 37(S1): 500-508.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Qiong, TANG Hui-ming, WANG Liang-qing, LIN Zhi-hong. Analytic solutions for phreatic line in reservoir slope with inclined impervious bed under rainfall and reservoir water level fluctuation[J]. , 2009, 30(10): 3025 -3031 .
[2] LEI Yong-sheng. Research on protective measures of City Wall and Bell Tower due to underneath crossing Xi’an Metro Line No.2[J]. , 2010, 31(1): 223 -228 .
[3] SHANG Shou-ping, SUI Xiao-xi, ZHOU Zhi-jin, LIU Fang-cheng, XIONG Wei. Study of dynamic shear modulus of granulated rubber-sand mixture[J]. , 2010, 31(2): 377 -381 .
[4] LI Feng, WANG Xiao-rui, LUO Xiao-hui, GUO Yuan-cheng. Assessment methods of chance constrained on bottom stability of foundation pit[J]. , 2010, 31(12): 3867 -3874 .
[5] YANG You-zhen, GE Xiu-run, HUANG Ming. Hamilton system and symplectic algorithm for space foundation[J]. , 2009, 30(2): 536 -541 .
[6] ZHANG Ting,LIU Han-long,HU Yu-xia,STEWART Doug. Geotechnical drum centrifuge technique and its engineering application[J]. , 2009, 30(4): 1191 -1196 .
[7] DENG Hua-feng,ZHANG Guo-dong,WANG Le-hua,DENG Cheng-jin,GUO Jing,LU Tao. Monitoring and analysis of blasting vibration in diversion tunnel excavation[J]. , 2011, 32(3): 855 -860 .
[8] DING Xuan-ming, LIU Han-long. Comparative analysis of dynamic responses of cast-in-place concrete large-diameter pipe pile and solid pile in homogeneous soil[J]. , 2011, 32(S1): 260 -264 .
[9] ZHANG Gui-rong , CHENG Wei. Stability prediction for Bazimen landslide of Zigui County under the associative action of reservoir water lever fluctuations and rainfall infiltration[J]. , 2011, 32(S1): 476 -0482 .
[10] SHU Zhi-le , LIU Xin-rong , ZHU Cheng-hong , GUO Zi-hong , LI Xiao-hong. Study of model test about 3D GPR detection of tunnel lining cavity[J]. , 2011, 32(S1): 551 -0558 .