›› 2008, Vol. 29 ›› Issue (2): 375-380.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on composite modelfor vibro-replacement stone column foundation by FEM

FU Shao-jun, WANG Man   

  1. School of Civil and Architectural Engineering, Wuhan University, Wuhan 430072, China
  • Received:2007-01-10 Online:2008-02-11 Published:2013-07-10

Abstract: Based on studying the mechanism of deformation and bearing capacity of vibro-replacement stone column foundation, the assumptive conditions are presented. The composite two-dimensional numerical model of stone columns is estabilished; this model considers the couple of stress-strain with Biot consolidation and the reinforced efficiency, the finite element analysis program (analysis program of soil engineering) is developed according to this model. The reliability and validity of APOSE is verified by two simple examples. APOSE can be applied to analyze the consolidation and subsidence of vibro-replacement stone columns and sand well compound foundation, etc..

Key words: vibro-replacement stone column, finite elements, composite model, consolidation

CLC Number: 

  • TU 443
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] LIU Zhong-yu, CUI Peng-lu, ZHENG Zhan-lei, XIA Yang-yang, ZHANG Jia-chao. Analysis of one-dimensional rheological consolidation with flow described by non-Newtonian index and fractional-order Merchant’s model [J]. Rock and Soil Mechanics, 2019, 40(6): 2029-2038.
[2] YANG De-huan, YAN Rong-tao, WEI Chang-fu, PAN Xue-ying, ZHANG Qin, . A method for determining average intergranular stresses in saturated clays [J]. Rock and Soil Mechanics, 2019, 40(6): 2075-2084.
[3] GONG Wen-hui, ZHAO Xu-dong, QIU Jin-wei, LI Yi, YANG Han. Nonlinear analysis of one-dimensional consolidation of saturated clay including dead-weight effects and large strain [J]. Rock and Soil Mechanics, 2019, 40(6): 2099-2107.
[4] JIA Rui, LEI Hua-yang, . Experimental study of anisotropic consolidation behavior of Ariake clay [J]. Rock and Soil Mechanics, 2019, 40(6): 2231-2238.
[5] LUO Qing-zi, CHEN Xiao-ping, YUAN Bing-xiang, FENG De-luan, . Deformation behavior and consolidation model of soft soil under flexible lateral constraint [J]. Rock and Soil Mechanics, 2019, 40(6): 2264-2274.
[6] WANG Peng-fei, TAN Wen-hui, MA Xue-wen, LI Zi-jian, LIU Jing-jun, WU Yang-fan, . Relationship between strength parameter and water content of fault gouge with different degrees of consolidation [J]. Rock and Soil Mechanics, 2019, 40(5): 1657-1662.
[7] PU He-fu, SONG Ding-bao, ZHENG Jun-jie, ZHOU Yang, YAN Jing, LI Zhan-yi. Non-linear self-weight consolidation model of saturated soft soil under large-strain condition [J]. Rock and Soil Mechanics, 2019, 40(5): 1683-1692.
[8] TONG Li-hong, WANG Jue, GUO Sheng-gen, ZHU Huai-long, XU Chang-jie, . One-dimensional consolidation characteristics of viscoelastic foundation with continuous drainage boundary under time- dependent loading [J]. Rock and Soil Mechanics, 2019, 40(5): 1862-1868.
[9] TANG Xiao-wu, YANG Xiao-qiu, YU Yue. Analytical solutions to drained consolidation of porous pipe pile [J]. Rock and Soil Mechanics, 2019, 40(4): 1248-1254.
[10] LI Xin-ming, KONG Ling-wei, GUO Ai-guo, . Stress-strain behavior of expansive soil under K0 condition with different unloading rates [J]. Rock and Soil Mechanics, 2019, 40(4): 1299-1306.
[11] JIN Dan-dan, WANG Su, LI Chuan-xun. Analysis of consolidation of natural heterogeneous soils with a threshold hydraulic gradient [J]. Rock and Soil Mechanics, 2019, 40(4): 1433-1440.
[12] ZHENG Li-ming, ZHANG Yang-yang, LI Zi-feng, MA Ping-hua, YANG Xin-jun, . Analysis of seepage changes during poroelastic consolidation process with porosity and pressure variation under low-frequency vibration [J]. Rock and Soil Mechanics, 2019, 40(3): 1158-1168.
[13] ZHENG Dong, HUANG Jin-song, LI Dian-qing, . An approach for predicting embankment settlement by integrating multi-source information [J]. Rock and Soil Mechanics, 2019, 40(2): 709-719.
[14] YAO Zhi-hua, CHEN Zheng-han, FANG Xiang-wei, HUANG Xue-feng, . Elastoplastic damage seepage-consolidation coupled model of unsaturated intact loess and its application [J]. Rock and Soil Mechanics, 2019, 40(1): 216-226.
[15] ZHANG Lei, LIU Hui, WANG Tie-hang. Shear tests on loess-concrete interface under consolidation and unconsolidation conditions [J]. Rock and Soil Mechanics, 2018, 39(S2): 238-244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Tao, YAN Ke-qin. Numerical simulation for influences of stress paths on earth's surface deformation[J]. , 2010, 31(2): 661 -666 .
[2] ZHANG Yu-cheng, YANG Guang-hua, JIANG Yan, YAO Jie, SHI Yong-sheng. Numerical simulation analysis of influence of blasting construction of foundation trench of immersed tunnel on stability of embankment[J]. , 2010, 31(S1): 349 -356 .
[3] ZHANG Lu-ming, ZHENG Ming-xin, HE Min. Study of characteristics of matric suction in landslide slip soils before and after landslide control[J]. , 2010, 31(10): 3305 -3312 .
[4] XIAO Lin, YANG Cheng-kui, HU Zeng-hui, LI Xiao-zhao, LI Mo. Model test on temperature distribution in metro tunnel surrounding rock and inverse calculation of its thermal conductivity[J]. , 2010, 31(S2): 86 -91 .
[5] YAO Hua-yan, FENG Xia-ting, CUI Qiang, SHEN Lin-fang, ZHOU Hui, CHENG Chang. Experimental study of effect of chemical corrosion on strength and deformation of hard brittle limestone[J]. , 2009, 30(2): 338 -344 .
[6] ZHANG Chun-hui, ZHAO Quan-sheng. Early warning system of mining subsidence damage based on ARCGIS[J]. , 2009, 30(7): 2197 -2202 .
[7] XU Zheng-ming, XUE Qiang, ZHAO Ying. Research on time effect of modified sludge composites by triaxial tests on mechanical properties[J]. , 2011, 32(6): 1713 -1718 .
[8] CUI Wei, SONG Hui-fang, ZHANG She-rong, YAN Shu-wang. Numerical simulation of craters produced by explosion in soil[J]. , 2011, 32(8): 2523 -2528 .
[9] CHEN Ming , HU Ying-guo , LU Wen-bo , YAN Peng , ZHOU Chuang-bing. Blasting excavation induced damage characteristics of diversion tunnel for Jinping cascade II hydropower station[J]. , 2011, 32(S2): 172 -177 .
[10] QIAO Chun-jiang , CHEN Wei-zhong , WANG Hui , TIAN Hong-ming , TAN Xian-jun. Study of construction method of tunnel in shallow broken rock mass[J]. , 2011, 32(S2): 455 -462 .