›› 2008, Vol. 29 ›› Issue (4): 979-982.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Consolidation solution of soil around single-pile after pile sinking

GAO Zi-kun, SHI Jian-yong   

  1. Research Institute of Geotechnical Engineering Hohai University, Nanjing 210098, China
  • Received:2006-03-24 Online:2008-04-10 Published:2013-07-10

Abstract: The two-dimensional consolidation in saturated soil around sunk pile is studied. Considered the initial distribution and boundary condition of excess pore water pressure caused by setting pile, the series solution can be found by using methods of mathematical physics. The comparison between the calculation values and the consolidation degree values which are deduced from the practical bearing capacity shows that the series solution is reasonable. On the other hand, the consolidation degree results from the series solution can also be used to predict the capacity of the pile.

Key words: consolidation, spatial axisymmetry, excess pore water pressure, series solution

CLC Number: 

  • TU 431
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] LIU Zhong-yu, CUI Peng-lu, ZHENG Zhan-lei, XIA Yang-yang, ZHANG Jia-chao. Analysis of one-dimensional rheological consolidation with flow described by non-Newtonian index and fractional-order Merchant’s model [J]. Rock and Soil Mechanics, 2019, 40(6): 2029-2038.
[2] YANG De-huan, YAN Rong-tao, WEI Chang-fu, PAN Xue-ying, ZHANG Qin, . A method for determining average intergranular stresses in saturated clays [J]. Rock and Soil Mechanics, 2019, 40(6): 2075-2084.
[3] GONG Wen-hui, ZHAO Xu-dong, QIU Jin-wei, LI Yi, YANG Han. Nonlinear analysis of one-dimensional consolidation of saturated clay including dead-weight effects and large strain [J]. Rock and Soil Mechanics, 2019, 40(6): 2099-2107.
[4] JIA Rui, LEI Hua-yang, . Experimental study of anisotropic consolidation behavior of Ariake clay [J]. Rock and Soil Mechanics, 2019, 40(6): 2231-2238.
[5] LUO Qing-zi, CHEN Xiao-ping, YUAN Bing-xiang, FENG De-luan, . Deformation behavior and consolidation model of soft soil under flexible lateral constraint [J]. Rock and Soil Mechanics, 2019, 40(6): 2264-2274.
[6] WANG Peng-fei, TAN Wen-hui, MA Xue-wen, LI Zi-jian, LIU Jing-jun, WU Yang-fan, . Relationship between strength parameter and water content of fault gouge with different degrees of consolidation [J]. Rock and Soil Mechanics, 2019, 40(5): 1657-1662.
[7] PU He-fu, SONG Ding-bao, ZHENG Jun-jie, ZHOU Yang, YAN Jing, LI Zhan-yi. Non-linear self-weight consolidation model of saturated soft soil under large-strain condition [J]. Rock and Soil Mechanics, 2019, 40(5): 1683-1692.
[8] TONG Li-hong, WANG Jue, GUO Sheng-gen, ZHU Huai-long, XU Chang-jie, . One-dimensional consolidation characteristics of viscoelastic foundation with continuous drainage boundary under time- dependent loading [J]. Rock and Soil Mechanics, 2019, 40(5): 1862-1868.
[9] TANG Xiao-wu, YANG Xiao-qiu, YU Yue. Analytical solutions to drained consolidation of porous pipe pile [J]. Rock and Soil Mechanics, 2019, 40(4): 1248-1254.
[10] LI Xin-ming, KONG Ling-wei, GUO Ai-guo, . Stress-strain behavior of expansive soil under K0 condition with different unloading rates [J]. Rock and Soil Mechanics, 2019, 40(4): 1299-1306.
[11] JIN Dan-dan, WANG Su, LI Chuan-xun. Analysis of consolidation of natural heterogeneous soils with a threshold hydraulic gradient [J]. Rock and Soil Mechanics, 2019, 40(4): 1433-1440.
[12] XIA Tang-dai, ZHENG Qing-qing, CHEN Xiu-liang, . Predicting excess pore water pressure under cyclic loading with regular intervals based on cumulative dynamic deviator stress level [J]. Rock and Soil Mechanics, 2019, 40(4): 1483-1490.
[13] ZHENG Li-ming, ZHANG Yang-yang, LI Zi-feng, MA Ping-hua, YANG Xin-jun, . Analysis of seepage changes during poroelastic consolidation process with porosity and pressure variation under low-frequency vibration [J]. Rock and Soil Mechanics, 2019, 40(3): 1158-1168.
[14] ZHENG Dong, HUANG Jin-song, LI Dian-qing, . An approach for predicting embankment settlement by integrating multi-source information [J]. Rock and Soil Mechanics, 2019, 40(2): 709-719.
[15] YAO Zhi-hua, CHEN Zheng-han, FANG Xiang-wei, HUANG Xue-feng, . Elastoplastic damage seepage-consolidation coupled model of unsaturated intact loess and its application [J]. Rock and Soil Mechanics, 2019, 40(1): 216-226.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Jun , LIU Quang-sheng , ZHANG Cheng-yuan . Study of thermo-hydro-mechanical coupling model in U-shaped GSHP[J]. , 2012, 33(S2): 1 -006 .
[2] LEI Wen-jie , ZHENG Ying-ren , FENG Xia-ting . Analysis of pile location on landslide control[J]. , 2006, 27(6): 950 -954 .
[3] HUA Xin-zhu , ZHAO Shao-hua , ZHU Hao , HU Hua-jun,. Research on combined support technique of gob-side entry retaining[J]. , 2006, 27(12): 2225 -2228 .
[4] Li Zuo-qin. SOME PROBLEMS CONCERNING DEFORMATION FAILURE AND STRENGTH OF CLAYS[J]. , 1980, 2(3): 63 -76 .