›› 2009, Vol. 30 ›› Issue (2): 440-446.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

An ameliorative nonlinear creep model and its application to thermal stress simulation during construction period

LIU Xing-hong1, ZHOU Wei2, CHANG Xiao-lin2, ZHOU Chuang-bing2   

  1. 1. School of Civil and Architectural Engineering, Wuhan University, Wuhan 430072, China; 2. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
  • Received:2007-05-17 Online:2009-02-10 Published:2011-01-27

Abstract:

At present elastic creep model is often adopted to compute thermal stress of concrete dam. This method is feasible when thermal stress in dam is lower. But the creep deformation of concrete is no longer to be linear relation with thermal stress when thermal stress is larger than the half of concrete tensile strength; and the relation between the creep and the thermal stress shows a strong nonlinearity. Thermal stress is more close to concrete strength, the concrete creep deformation is more larger. A concrete nonlinear creep model is presented based on concrete creep test results and a corresponding algorithm is also presented. The computation results of an example and actual project show that the thermal stresses computed by elastic creep model and nonlinear creep model exist a little difference between them; and the thermal stress of the former is larger.

Key words: concrete dam, nonlinear creep, thermal stress, finite elements

CLC Number: 

  • TV 641
[1] ZHANG Wei, QU Zhan-qing, GUO Tian-kui, SUN Jiang. Numerical simulation of hydraulic fracturing in hot dry rocks under the influence of thermal stress [J]. Rock and Soil Mechanics, 2019, 40(5): 2001-2008.
[2] LIU Qing-bin, PAN Mao, LIU Jie, GUO Yan-jun, ZHANG Xiao-shuang, YAO Jian-peng, LI Fang-yu, . Paraview visualization and virtual reality of output of finite element analysis in Abaqus [J]. Rock and Soil Mechanics, 2019, 40(12): 4916-4924.
[3] FEI Kang, DAI Di, HONG Wei, . A simplified method for working performance analysis of single energy piles [J]. Rock and Soil Mechanics, 2019, 40(1): 70-80.
[4] WANG Zhong-jin, FANG Peng-fei, XIE Xin-yu, WANG Kui-hua, WANG Wen-jun, LI Jin-zhu, . Analysis of effected factors for vertical compressive bearing capacity of ribbed bamboo joint pile [J]. Rock and Soil Mechanics, 2018, 39(S2): 381-388.
[5] ZHENG An-xing, LUO Xian-qi,. An extended finite element method for modeling hydraulic fracturing in perilous rock [J]. , 2018, 39(9): 3461-3468.
[6] XIONG Hao, QIU Zhan-hong, WANG Xiao-gang . Directional interpolation infinite elements for elastic medium [J]. Rock and Soil Mechanics, 2018, 39(12): 4659-4664.
[7] WU Meng-xi, YU Ting, ZHANG Qi,. Finite element simulation of influence of deep overburden suffusion on dam stress and deformation [J]. , 2017, 38(7): 2087-2095.
[8] XIAO Yong-jie, CHEN Fu-quan, LIN Liang-qing. Study of ground vibration and vibration isolation due to sleeve of cast-in-place piles installed by vibratory driving [J]. , 2017, 38(3): 705-713.
[9] LIU Hong-jun, ZHANG Hao, LI Hong-jiang, YIN Yan-jing,. Finite element analysis of horizontal bearing capacity of umbrella suction anchor foundation in soft clay [J]. , 2017, 38(11): 3325-3331.
[10] YE Zu-yang, JIANG Qing-hui, LIU Yan-zhang, CHENG Ai-ping, . Numerical analysis of unsaturated seepage flow in discrete fracture networks of rock [J]. , 2017, 38(11): 3332-3340.
[11] ZHAO Ming-hua, LU Xing-ming, ZHANG Rui. Upper bound finite element method for ultimate bearing capacity and failure mechanism of subgrade above void [J]. , 2017, 38(1): 229-236.
[12] SONG Zi-heng, YANG Qiang, LIU Yao-ru. Elastoplastic model for geomaterial considering effect of pore water pressure and its finite elements implementation [J]. , 2016, 37(S1): 500-508.
[13] LI Dong-dong , XIAO Ming , CHEN Jun-tao , ZHAO Jian , . Finite element simulation and application of asphalt-coating bolts for rock-anchored beams in underground powerhouse [J]. , 2016, 37(S1): 616-624.
[14] SUN Cong ,LI Chun-guang ,ZHENG Hong ,SUN Guan-hua,. Upper bound limit analysis based on Taylor expansion form of element velocity [J]. , 2016, 37(4): 1153-1160.
[15] TIAN Dong-fang ,ZHENG Hong ,LIU De-fu,. 2D FEM numerical simulation of rainfall infiltration for landslide with considering runoff effect and its application [J]. , 2016, 37(4): 1179-1186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[2] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[3] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[4] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[5] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[6] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[7] WANG Guang-jin,YANG Chun-he ,ZHANG Chao,MA Hong-ling,KONG Xiang-yun ,HO. Research on particle size grading and slope stability analysis of super-high dumping site[J]. , 2011, 32(3): 905 -913 .
[8] HU Hai-jun, JIANG Ming-jing, ZHAO Tao, PENG Jian-bing, LI Hong. Effects of specimen-preparing methods on tensile strength of remolded loess[J]. , 2009, 30(S2): 196 -199 .
[9] LI Min,CHAI Shou-xi,WANG Xiao-yan,WEI Li. Examination of reinforcement effect on basis of strength increment of reinforced saline soil with wheat straw and lime[J]. , 2011, 32(4): 1051 -1056 .
[10] XU Chong, LIU Bao-guo, LIU Kai-yun, GUO Jia-qi. Intelligent analysis model of landslide displacement time series based on coupling PSO-GPR[J]. , 2011, 32(6): 1669 -1675 .