›› 2009, Vol. 30 ›› Issue (4): 1197-1200.

• Testing Technology • Previous Articles    

Study of intelligent pile ultrasonic CT testing system

ZHANG Jie,SHEN Xiao-yun,LIU Ming-gui   

  1. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071
  • Received:2008-10-10 Online:2009-04-10 Published:2011-01-30

Abstract:

The intelligent pile ultrasonic computerized tomography (CT) testing system represents a direction of development for ultrasonic testing technology. Its main characteristic is data got by cross-hole fanning testing, and ultrasonography got by CT inversion. The formation, basic theory, key technique and application of the intelligent pile ultrasonic CT testing system are discussed systematically. The simulated annealing algorithm(SA) is used; and the relationship between CT testing system and SA is analyzed. According to project cases, the data of defective like scale、severity, will be got by ultrasonography. In addition, the result will be gain visually.

Key words: simulated annealing algorithm, inversion, CT testing system, ultrasonic testing

CLC Number: 

  • TP 73
[1] RUAN Yong-fen, GAO Chun-qin, LIU Ke-wen, JIA Rong-gu, DING Hai-tao, . Inversion of rock and soil mechanics parameters based on particle swarm optimization wavelet support vector machine [J]. Rock and Soil Mechanics, 2019, 40(9): 3662-3669.
[2] MA Chun-hui, YANG Jie, CHENG Lin, LI Ting, LI Ya-qi, . Adaptive inversion analysis of material parameters of rock-fill dam based on QGA-MMRVM [J]. Rock and Soil Mechanics, 2019, 40(6): 2397-2406.
[3] XU Nian-chun, WU Tong-qing, PI Hai-yang, YOU Lei, WU Yue,. Inversion of shear strength of soil based on flexible bearing plate loading test [J]. , 2018, 39(S1): 227-234.
[4] YAN Tian-you, CUI Zhen, ZHANG Yong-hui, ZHANG Chuan-jian, SHENG Qian, LI Jian-he,. Study of distribution characteristics of in-situ stress field in occurrence area of crossing active fault tunnel engineering [J]. , 2018, 39(S1): 378-386.
[5] WANG Qing-wu, JU Neng-pan, DU Ling-li, HUANG Jian, HU Yong,. Three dimensional inverse analysis of geostress field in the Sangri–Jiacha section of Lasa–Linzhi railway [J]. , 2018, 39(4): 1450-1462.
[6] LIU Fei-yue, YANG Tian-hong, ZHANG Peng-hai1, ZHOU Jing-ren, DENG Wen-xue, HOU Xian-gang, ZHAO Yong-chuan, . Dynamic inversion of rock fracturing stress field based on acoustic emission [J]. , 2018, 39(4): 1517-1524.
[7] YIN Shuai, DING Wen-long, SHAN Yu-ming, ZHOU Wen, XIE Run-cheng,. A new method for quantitative evaluation of microcrack stress sensitivity of tight sandstone reservoir based on inversion of acoustic data [J]. , 2017, 38(2): 409-418.
[8] CAO Yuan, NIU Guan-yi, WANG Tie-liang, WANG Ying-jie,. A new method for rock porosity inversion based on in-situ permeability test [J]. , 2017, 38(1): 272-276.
[9] FENG Fan, QIU Xin-jiao, ZHANG Guo-xin, GUAN Jun-feng, WANG Dan,. Inversion of mechanical parameters of super-high arch dam based on deformation monitoring during construction period [J]. , 2017, 38(1): 237-246.
[10] WU Shun-chuan, HUANG Xiao-qing, CHEN Fan, CHAI Jin-fei, WU Hao-yan, . Moment tensor inversion of rock failure and its application [J]. , 2016, 37(S1): 1-18.
[11] WANG Kai-he, LUO Xian-qi, SHEN Hui, ZHANG Hai-tao. GSA-BP neural network model for back analysis of surrounding rock mechanical parameters and its application [J]. , 2016, 37(S1): 631-638.
[12] LI Pei-chao, XU Zhen-hua. An analytical solution of finite two-dimensional Biot’s consolidation due to surface loading within a fluid-saturated porous medium [J]. , 2016, 37(9): 2599-2602.
[13] YANG He, ZHOU Wei, MA Gang, LI Shao-lin, CHANG Xiao-lin. Inversion of instantaneous and rheological parameters of high rockfill dams based on response surface method [J]. , 2016, 37(6): 1697-1705.
[14] CHEN Jian, WANG Zhan-sheng, RONG Hu-reng,. ‘Two sides of one’ method for inversion of correlated parameters random fields [J]. , 2016, 37(6): 1773-1780.
[15] GUO Qing-biao , GUO Guang-li , Lü Xin , CHEN Tao , WANG Jin-tao,. Prediction model for surface subsidence and parameters inversion in valley bottom area [J]. , 2016, 37(5): 1351-1356.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Qiong, TANG Hui-ming, WANG Liang-qing, LIN Zhi-hong. Analytic solutions for phreatic line in reservoir slope with inclined impervious bed under rainfall and reservoir water level fluctuation[J]. , 2009, 30(10): 3025 -3031 .
[2] HE Fa-guo, CHEN Wen-wu, HAN Wen-feng, ZHANG Jing-ke. Correlation of microstructure indices and performance of sand solidified with polymer material SH[J]. , 2009, 30(12): 3803 -3807 .
[3] LEI Yong-sheng. Research on protective measures of City Wall and Bell Tower due to underneath crossing Xi’an Metro Line No.2[J]. , 2010, 31(1): 223 -228 .
[4] SHANG Shou-ping, SUI Xiao-xi, ZHOU Zhi-jin, LIU Fang-cheng, XIONG Wei. Study of dynamic shear modulus of granulated rubber-sand mixture[J]. , 2010, 31(2): 377 -381 .
[5] CHAI Bo, YIN Kun-long, CHEN Li-xia, LI Yuan-yao. Analysis of slope deformation under control of rock mass structure[J]. , 2009, 30(2): 521 -525 .
[6] SU Guo-shao, ZHANG Ke-shi, Lü Hai-bo. A cooperative optimization method based on particle swarm optimization and Gaussian process for displacement back analysis[J]. , 2011, 32(2): 510 -515 .
[7] GAO Wen-hua, ZHU Jian-qun, ZHANG Zhi-min, HUANG Zi-yong. Numerical simulation of ultimate bearing capacity of soft rock foundation based on Hoek-Brown nonlinear failure criterion[J]. , 2011, 32(2): 593 -598 .
[8] LENG Yi,LUAN Mao-tian,XU Cheng-shun,MA Tai-lei. Experimental research on behaviors of saturated sand subject to drained shear strength under complex stress conditions[J]. , 2009, 30(6): 1620 -1626 .
[9] HU Zai-qiang, LI Hong-ru, SU Yong-jiang. 3-D static stress and displacement analysis of Gangqu river concrete faced rockfill dam[J]. , 2009, 30(S2): 312 -0317 .
[10] ZHANG Gui-rong , CHENG Wei. Stability prediction for Bazimen landslide of Zigui County under the associative action of reservoir water lever fluctuations and rainfall infiltration[J]. , 2011, 32(S1): 476 -0482 .