›› 2009, Vol. 30 ›› Issue (6): 1549-1554.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Slope safety factor by methods of particle flow code strength reduction and gravity increase

ZHOU Jian 1, 2,WANG Jia-quan 1, 2,ZENG Yuan3,JIA Min-cai 1,2   

  1. 1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai, 200092, China; 3. CCCC Third Harbor Consultants Co.,Ltd., Shanghai 200032, China
  • Received:2007-07-09 Online:2009-06-10 Published:2011-03-09

Abstract:

trength reduction method and gravity increase method are introduced into the discrete element method for experimental study of slope safety factor. The research of slope stability is carried on by using particle flow code (PFC) software and adopting strength reduction and gravity increase methods, and the result is close to the calculation results of finite element method and slice method. The method opens a new way for calculating slope stability. If using PFC to solve the slope safety factor, slice method is not needed, namely it does not need to make an assumption of the inter-slice force. And at the same time, it does not need to assume the position and the shape of the sliding surface, because the particles adjust their positions according to their received contact forces; and finally, the shear failure of the slope occurs on the weakest surface of shear strength. Different viewpoints are put forward about inequality proportion reduction of strength reduction method, which provide new speculations for future research.

Key words: particle flow code(PFC), discrete element method, strength reduction method, gravity increase method, safety factor

CLC Number: 

  • TU 457
[1] LI Jian, CHEN Shan-xiong, YU Fei, JIANG Ling-fa, DAI Zhang-jun. Discussion on mechanism of reinforcing high and steep slope with prestressed anchor cable [J]. Rock and Soil Mechanics, 2020, 41(2): 707-713.
[2] KUANG Du-min, LONG Zhi-lin, ZHOU Yi-chun, YAN Chao-ping, CHEN Jia-min, . Prediction of rate-dependent behaviors of cemented geo-materials based on BP neural network [J]. Rock and Soil Mechanics, 2019, 40(S1): 390-399.
[3] ZHANG Hai-na, CHEN Cong-xin, ZHENG Yun, SUN Chao-yi, ZHANG Ya-peng, LIU Xiu-min, . Analysis of flexural toppling failure of rock slopes subjected to the load applied on the top [J]. Rock and Soil Mechanics, 2019, 40(8): 2938-2946.
[4] CHEN Zheng, HE Ping, YAN Du-min, GAO Hong-jie, NIE Ao-xiang, . Upper-bound limit analysis of tunnel face stability under advanced support [J]. Rock and Soil Mechanics, 2019, 40(6): 2154-2162.
[5] WU Guan-ye, ZHENG Hui-feng, XU Jian-rong. Model test study of stability and failure mechanism of three-dimensional complicated block system slope with deeply reinforcement [J]. Rock and Soil Mechanics, 2019, 40(6): 2369-2378.
[6] WANG Yun-jia, SONG Er-xiang. Discrete element analysis of the particle shape effect on packing density and strength of rockfills [J]. Rock and Soil Mechanics, 2019, 40(6): 2416-2426.
[7] ZHAO Lan-hao, RUI Kai-tian, LIU Xun-nan. A fast linear contact detection algorithm for discrete particles of arbitrary sizes [J]. Rock and Soil Mechanics, 2019, 40(3): 1187-1196.
[8] ZHANG Cheng-gong, YIN Zhen-yu, WU Ze-xiang, JIN Yin-fu, . Three-dimensional discrete element simulation of influence of particle shape on granular column collapse [J]. Rock and Soil Mechanics, 2019, 40(3): 1197-1203.
[9] GU Xiao-qiang, YANG Shuo-cheng, . Numerical investigation on the elastic properties of granular soils by discrete element method [J]. Rock and Soil Mechanics, 2019, 40(2): 785-791.
[10] XIAO Si-you, SU Li-jun, JIANG Yuan-jun, LI Cheng, LIU Zhen-yu, . Influence of slope angle on mechanical properties of dry granular flow impacting vertical retaining wall [J]. Rock and Soil Mechanics, 2019, 40(11): 4341-4351.
[11] TANG Hong-xiang, WEI Wen-cheng. Finite element analysis of slope stability by coupling of strength anisotropy and strain softening of soil [J]. Rock and Soil Mechanics, 2019, 40(10): 4092-4100.
[12] JING Lu, KWOK Chung-yee, ZHAO Tao, . Understanding dynamics of submarine landslide with coupled CFD-DEM [J]. Rock and Soil Mechanics, 2019, 40(1): 388-394.
[13] WU Tian-hua, ZHOU Yu, WANG Li, SUN Jin-hai, ZHAO Huan, SUN Zheng, . Mesoscopic study of interaction mechanism between circular hole and fissures in rock under uniaxial compression [J]. Rock and Soil Mechanics, 2018, 39(S2): 463-472.
[14] SHEN Hai-meng, LI Qi, LI Xia-ying, MA Jian-li, . Laboratory experiment and numerical simulation on brittle failure characteristics of Longmaxi formation shale in Southern Sichuan under different stress conditions [J]. Rock and Soil Mechanics, 2018, 39(S2): 254-262.
[15] YIN Xiao-tao, YAN Fei, QIN Yu-qiao, ZHOU Lei, WANG Dong-ying, . Dynamic stability evaluation on Huaping bedding bank slope of Jinshajiang River Bridge in Huali Expressway under seismic action [J]. , 2018, 39(S1): 387-394.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[2] NIE Ying, LUAN Mao-tian, TANG Xiao-wei, GUO Ying, ZHANG Zhen-dong. Study of monotonic and coupling cyclic shear characteristics of overconsolidated clay[J]. , 2009, 30(9): 2616 -2622 .
[3] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[4] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[5] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[6] LU Li, ZHANG Si-ping, ZHANG Yong-xing, HU Dai-wen, WU Shu-guang. Field pull-out test and behavior analysis of compression type rock anchor cables[J]. , 2010, 31(8): 2435 -2440 .
[7] WANG Wei-ming, SUN Rui, CAO Zhen-zhong, YUAN Xiao-ming. Comparative study of features of liquefied sites at home and abroad[J]. , 2010, 31(12): 3913 -3918 .
[8] XIONG Wei, ZHOU Zeng-hui, YU Kai-biao, WU Ya-ping, LUO Wei. Concrete ultrasonic tomography imaging and improvement based on curved path[J]. , 2011, 32(2): 629 -634 .
[9] XU Jiang, TANG Xiao-jun, LI Shu-chun, YANG Hong-wei, TAO Yun-qi. Experimental research on acoustic emission rules of rock under cyclic loading[J]. , 2009, 30(5): 1241 -1246 .
[10] HU Hai-jun, JIANG Ming-jing, ZHAO Tao, PENG Jian-bing, LI Hong. Effects of specimen-preparing methods on tensile strength of remolded loess[J]. , 2009, 30(S2): 196 -199 .