›› 2009, Vol. 30 ›› Issue (9): 2588-2594.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental research on strength characteristic of brittle rock unloading confining pressure

LIU Dou-dou1, 2, CHEN Wei-zhong2, 3, YANG Jian-ping3, TAN Xian-jun3, ZHOU Xi-de4   

  1. 1. Institute of Business Administration, Shandong University of Finance, Ji’nan 250014, China; 2. Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan 250061, China; 3. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 4. Ertan Hydropower Development Co., Ltd., Chengdu 610021, China
  • Received:2008-04-24 Online:2009-09-10 Published:2010-03-24

Abstract:

The bearing capacity of rock sample is determined by material strength and confining pressure together. Both axial compression and unloading confining pressure can induce the failure of rock sample, but because of different stress paths, the failure processes under two conditions are different. The tests of conventional triaxial, pre-peak unloading confining pressure and post-peak unloading confining pressure are done to the Baishan marble which comes from access tunnel in Jinping Hydropower Station lying on Yalong River. The test curve and the rock sample failure characteristics indicate that rock samples are all showing brittle failure in pre-peak and post-peak unloading confining pressure tests; and the brittle characteristics in pre-peak test is more stronger than that in post-peak test. The deformations of rock sample in loading and unloading are increasing with the increase of principal stress difference; but dilatancy in unloading is bigger than that in loading under the same principal stress difference. Rock sample fails as confining pressure unloaded to about 60 % of initial confining pressure in pre-peak unloading confining pressure test; and as confining pressure unloaded to about 80 % of initial confining pressure in post-peak unloading confining pressure test, it fails. The conclusion can be for reference in internal correlative engineering stability analysis, design and construction.

Key words: pre-peak unloading confining pressure, post-peak unloading confining pressure, unloading

CLC Number: 

  • TU 457
[1] REN Qing-yang, ZHANG Huang-mei, LIU Jia-shen, . Rheological properties of mudstone under two unloading paths in experiments [J]. Rock and Soil Mechanics, 2019, 40(S1): 127-134.
[2] ZHAI Ming-lei, GUO Bao-hua, WANG Chen-lin, JIAO Feng, . Compression-shear failure characteristics of rock with penetrated fracture under normal unloading condition [J]. Rock and Soil Mechanics, 2019, 40(S1): 217-223.
[3] JIN Ai-bing, LIU Jia-we, ZHAO Yi-qing, WANG Ben-xin, SUN Hao, WEI Yu-dong, . Mechanical characteristics analysis of granite under unloading conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 459-467.
[4] HOU Gong-yu, JING Hao-yong, LIANG Jin-ping, ZHANG Guang-dong, TAN Jin-xin, ZHANG Yong-kang, YANG Xi, . Experimental study of deformation and acoustic emission characteristics of rectangular roadway under different unloading rates [J]. Rock and Soil Mechanics, 2019, 40(9): 3309-3318.
[5] LI Jing-jing, KONG Ling-wei, . Creep properties of expansive soil under unloading stress and its nonlinear constitutive model [J]. Rock and Soil Mechanics, 2019, 40(9): 3465-3475.
[6] CHEN Yong, SU Jian, TAN Yun-zhi, CHAN Dave, . Water retention capacities of soils under the coupling actions of cyclic drying-wetting and repeated loading-unloading [J]. Rock and Soil Mechanics, 2019, 40(8): 2907-2913.
[7] LI Xin-ming, KONG Ling-wei, GUO Ai-guo, . Experimental study of ageing effect on mechanical properties of Nanyang undisturbed expansive soil [J]. Rock and Soil Mechanics, 2019, 40(8): 2947-2955.
[8] MA De-peng, ZHOU Yan, LIU Chuan-xiao, SHANG Yan-dong, . Energy evolution characteristics of coal failure in triaxial tests under different unloading confining pressure rates [J]. Rock and Soil Mechanics, 2019, 40(7): 2645-2652.
[9] LI Jian-peng, GAO Ling, MU Huan-sheng. Dilatancy characteristics of sandstone and its function of dilatancy angle under high confining pressure and unloading conditions [J]. Rock and Soil Mechanics, 2019, 40(6): 2119-2126.
[10] WANG Chen-lin, ZHANG Xiao-dong, DU Zhi-gang, . Experimental study of the permeability of coal specimen with pre-existing fissure under cyclic loading and unloading [J]. Rock and Soil Mechanics, 2019, 40(6): 2140-2153.
[11] WANG Tie-hang, JIN Xin, LUO Yang, ZHANG Song-lin. A method for evaluation of loess collapse potential of unloading [J]. Rock and Soil Mechanics, 2019, 40(4): 1281-1290.
[12] CONG Yi, CONG Yu, ZHANG Li-ming, JIA Le-xin, WANG Zai-quan, . 3D particle flow simulation of loading-unloading failure process of marble [J]. Rock and Soil Mechanics, 2019, 40(3): 1179-1186.
[13] HOU Gong-yu, LIANG Jin-ping, JING Hao-yong, HU Tao, ZHANG Guang-dong, TAN Jin-xin, YANG Xi, ZHANG Yong-kang, . Acoustic emission characteristics of thick-walled cylinder specimen subjected to triaxial loading during excavation unloading [J]. Rock and Soil Mechanics, 2019, 40(12): 4564-4572.
[14] LI Xin-ming, KONG Ling-wei, GUO Ai-guo, . Experimental study on shear mechanical properties of unloading damaged undisturbed expansive soil [J]. Rock and Soil Mechanics, 2019, 40(12): 4685-4692.
[15] LI Xin-ming, KONG Ling-wei, GUO Ai-guo, . Experimental study of the influence of unloading rate on the shear mechanical properties of undisturbed expansive clay [J]. Rock and Soil Mechanics, 2019, 40(10): 3758-3766.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Kui, GAO Bo. Study of construction schemes for metro tunnel crossing river and bridge[J]. , 2010, 31(5): 1509 -1516 .
[2] YANG Bing, YANG Jun, CHANG Zai, GAN Hou-yi, SONG Er-xiang. 3-D granular simulation for compressibility of soil-aggregate mixture[J]. , 2010, 31(5): 1645 -1650 .
[3] XIAO Shi-guo,XIAN Fei,WANG Huan-long. 一种微型桩组合抗滑结构内力分析方法[J]. , 2010, 31(8): 2553 -2559 .
[4] YE Hai-lin, ZHENG Ying-ren, HUANG Run-qiu, DU Xiu-li, LI An-hong4, XU Jiang-bo. Study of application of strength reduction dynamic analysis method to aseismic design of anti-slide piles for landslide[J]. , 2010, 31(S1): 317 -323 .
[5] ZHANG Yu-min,SHENG Qian,ZHU Ze-qi,YANG Ji-hua. Some influence factors on displacement characteristics of cavern group under strong earthquake[J]. , 2010, 31(11): 3525 -3530 .
[6] Lü Xi-lin,HUANG Mao-song,QIAN Jian-gu. Strength of soils considering the influence of deformation bifurcation under true triaxial condition[J]. , 2011, 32(1): 21 -26 .
[7] ZHANG Zhi-pei, PENG Hui, RAO Xiao. Numerical simulation study of grouting diffusion process in soft soil foundation[J]. , 2011, 32(S1): 652 -0655 .
[8] WU Li-zhou , ZHANG Li-min , HUANG Run-qiu. Analytic solution to coupled seepage in layered unsaturated soils[J]. , 2011, 32(8): 2391 -2396 .
[9] LIU Run , WANG Xiu-yan , LIU Yue-hui , WANG Wu-gang. Thermal buckling analysis of submarine buried pipelines with isolated prop initial imperfection[J]. , 2011, 32(S2): 64 -69 .
[10] LIANG Yao-zhe. Analysis of active earth pressure of rigid pile composite foundation[J]. , 2012, 33(S1): 25 -29 .