›› 2009, Vol. 30 ›› Issue (S1): 165-168.

• Geotechnical Engineering • Previous Articles     Next Articles

Hydro-mechanical coupling analysis of mining effect around fault fractured zone

LU Xing-li1, LIU Quan-sheng1, WU Chang-yong2, ZHAO Jun1   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2. Poly Real Estate Group Co., Ltd., Nanning 530028, China
  • Received:2009-03-20 Online:2009-08-10 Published:2011-03-16

Abstract:

The floor water inrush in coal mine is a complicated multi-physics coupling issue. Combined with fractured zone under the conditions of stope mining background, the coupled hydro-mechanical module of Universal Distinct Element Code (UDEC) is used. And the dynamic development and distribution of fault deformation and stress, floor abutment pressure, flow vector and flow velocity are systematically analyzed as the working face advances. It is shown that the coal mining process of stope sill and faults fractured zone are mutual influenced. The abutment pressure which is representative of mining-induced stress is the main inducement of forming water flowing fracture zone and making activation of fault. While the presence of fault makes the stress more concentrated between working face and faults fractured zone, which increases the risk of floor water inrush. In addition, the water flowing fracture zone mainly concentrated in front of and rear of the working face, which is the main channel of floor water inrush.

Key words: floor water inrush, fault, hydro-mechanical coupling, mining-induced stress, water flowing fractured zone

CLC Number: 

  • TU 45
[1] CHEN Wu, ZHANG Guo-hua, WANG Hao, ZHONG Guo-qiang, WANG Cheng-tang, . Evaluation of possibility of tunnel collapse by drilling and blasting method based on T-S fuzzy fault tree [J]. Rock and Soil Mechanics, 2019, 40(S1): 319-328.
[2] ZHAO Mi, OUYANG Wen-long, HUANG Jing-qi, DU Xiu-li, ZHAO Xu, . Analysis of axis dynamic response of rock tunnels through fault fracture zone under P waves of earthquake [J]. Rock and Soil Mechanics, 2019, 40(9): 3645-3655.
[3] SUN Fei, ZHANG Zhi-qiang, YI Zhi-wei. Model experimental study of the influence of normal fault with stick-slip dislocation on subway tunnel structure [J]. Rock and Soil Mechanics, 2019, 40(8): 3037-3044.
[4] WANG Peng-fei, TAN Wen-hui, MA Xue-wen, LI Zi-jian, LIU Jing-jun, WU Yang-fan, . Relationship between strength parameter and water content of fault gouge with different degrees of consolidation [J]. Rock and Soil Mechanics, 2019, 40(5): 1657-1662.
[5] YANG Zong-ji, CAI Huan, LEI Xiao-qin, WANG Li-yong, DING Peng-peng, QIAO Jian-ping, . Experiment on hydro-mechanical behavior of unsaturated gravelly soil slope [J]. Rock and Soil Mechanics, 2019, 40(5): 1869-1880.
[6] ZHONG Guo-qiang, WANG Hao, KONG Li, WANG Cheng-tang, . Evaluation of the possibility of foundation pit collapse with " diaphragm wall+ support" based on T-S fuzzy fault tree [J]. Rock and Soil Mechanics, 2019, 40(4): 1569-1576.
[7] GAO Cheng-lu, LI Shu-cai, LIN Chun-jin, LI Li-ping, ZHOU Zong-qing, LIU Cong, SUN Shang-qu, . Development and application of model test system for water leakage disease in tunnel lining [J]. Rock and Soil Mechanics, 2019, 40(4): 1614-1622.
[8] CAI Qi-peng, GAN Gang-lu, NG C. W. W., CHEN Xing-xin, XIAO Zhao-yun, . Study on failure mechanism and setback distance of a pile group in sand subjected to normal faulting [J]. Rock and Soil Mechanics, 2019, 40(3): 1067-1075.
[9] LIU Yun, LAI Jie, XIN Jian-ping, LI Xiu-di, XING Rong-jun, . Comparison test of dynamic response characteristics of the tunnels through fault [J]. Rock and Soil Mechanics, 2019, 40(12): 4693-4702.
[10] GUO Kong-ling, YANG Lei, SHENG Xiang-chao, MEI Jie, LI Bang-xiang, ZHANG Bo, YANG Wei-min, SONG Guang-xiao, . Fracture mechanical behavior and AE characteristics of rock-like material containing 3-D crack under hydro-mechanical coupling [J]. Rock and Soil Mechanics, 2019, 40(11): 4380-4390.
[11] YAN Gao-ming, SHEN Yu-sheng, GAO Bo, ZHENG Qing, FAN Kai-xiang, HUANG Hai-feng. Experimental study of stick-slip fault crossing segmental tunnels with joints [J]. Rock and Soil Mechanics, 2019, 40(11): 4450-4458.
[12] LU Zhi-guo, JU Wen-jun, ZHAO Yi-xin, WANG Hao, ZHENG Jian-wei, LIU Ai-qing, . Analysis of the mining induced stress rotation influence on fault stability [J]. Rock and Soil Mechanics, 2019, 40(11): 4459-4466.
[13] WANG Pu, WANG Chen-hu, YANG Ru-hua, HOU Zhen-yang, WANG Hong, . Preliminary investigation on the deep rock stresses prediction method based on stress polygon and focal mechanism solution [J]. Rock and Soil Mechanics, 2019, 40(11): 4486-4496.
[14] WANG Peng-fei, LI Chang-hong, MA Xue-wen, LI Zi-jian, LIU Jing-jun, WU Yang-fan, . Experimental study of seepage characteristics of soil-rock mixture with different rock contents in fault zone [J]. Rock and Soil Mechanics, 2018, 39(S2): 53-61.
[15] LIU Zhen, ZHOU Cui-ying, LU Yi-qi, LIN Zhen-zhen, LIANG Yan-hao, GE Xing-xing, HE Xin-fu,. Development of the multi-scale mechanical experimental system for rheological damage effect of soft rock bearing the hydro-mechanical coupling action [J]. , 2018, 39(8): 3077-3086.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIAO Yun-hua, WANG Qing, CHEN Jian-ping. Application of method for weight calculation based on optimization technique to evaluate rock mass quality[J]. , 2009, 30(9): 2686 -2690 .
[2] FAN Qing-lai, LUAN Mao-tian, LIU Zhan-ge. Numerical simulation of penetration resistance of T-bar penetrometer in soft clay[J]. , 2009, 30(9): 2850 -2854 .
[3] YE Xiao-ping,SUN Qiang, WANG Yuan-yuan, LI Hou-en2, XUE Lei. A modified hypoplastic constitutive model for clay[J]. , 2010, 31(4): 1099 -1102 .
[4] ZHANG An-kang,CHEN Shi-hai,DU Rong-qiang,WEI Hai-xia. Energy-based elastoplastic damage model for rock materials with strain rate effects[J]. , 2010, 31(S1): 207 -210 .
[5] WANG Xiao-jun, QU Yao-hui, WEI Yong-liang, YANG Yin-hai, DA Yi-zheng. Settlement observation and prediction research of test embankment in collapsible loess area along Zhengzhou-Xi'an passenger dedicated line[J]. , 2010, 31(S1): 220 -231 .
[6] LI Ming-chao, WANG Zhong-yao, LIU Jie. Stability analysis and three-dimensional visual simulation system of landslide at reservoir banks[J]. , 2009, 30(1): 270 -274 .
[7] QIAN Jian-gu, Lü Xi-lin, HUANG Mao-song. Softening characteristics of soils and constitutive modeling under plane strain condition[J]. , 2009, 30(3): 617 -622 .
[8] ZHAO Yan-xi, XU Wei-ya. Risk assessment of TBM construction for tunnels based on AHP and fuzzy synthetic evaluation[J]. , 2009, 30(3): 793 -798 .
[9] LI Xin-ping, MENG Jian, XU Peng-cheng. Study of blasting seismic effects of cable shaft in Xiluodu hydropower station[J]. , 2011, 32(2): 474 -480 .
[10] ZHAO Bao-you, MA Zhen-yue, LIANG Bing, JIN Chang-yu. Seismic analysis of underground structures based on damaged plasticity model[J]. , 2009, 30(5): 1515 -1521 .