›› 2010, Vol. 31 ›› Issue (1): 133-143.

• Geotechnical Engineering • Previous Articles     Next Articles

State-of-art of research on mechanical properties of frozen soils

QI Ji-lin,MA Wei   

  1. State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2009-07-18 Online:2010-01-10 Published:2010-02-02

Abstract:

China has a large area with seasonally and perennially frozen soils. It is necessary to study mechanical properties of frozen soils for the sake of constructions in cold regions, so as to guarantee their stability. In this paper, the distribution of frozen soils in China and the main features of frozen soils differing from unfrozen soils, are briefly described firstly. Generally speaking, frozen soil mechanics consists of two main aspects, i.e. freeze-thaw related problems and mechanical properties of the already-frozen soils. Frost heave, thaw settlement and freeze-thaw induced changes in mechanical properties are freeze-thaw related problems. Frost heave has been extensively studied. Various theories have been put forward to describe the mechanism of ice segregation which is considered as the main cause of frost heave; and some theories have even been applied to quantitative analysis. The study of thaw settlement has a long history, while most of the previous studies still stay in empirical stage. Thaw consolidation has been studied; but it has considerable limitations so far. Therefore, we suggest that the artificial neural network could be used to improve the precision and applicability in estimating thaw settlement on the one side, large strain theory could be used to improve thaw consolidation theory. For the already-frozen soils, this paper summarizes the previous studies on strength, stress-strain relationship and dynamic properties. Study of the strength of frozen soil borrows strength theories for unfrozen soils; however, they can hardly reflect stress melting of frozen soils under high stresses. The previous studies of stress-strain relationship of frozen soils have been focusing on creep; and the empirical relationship directly obtained from testing data is the mainstream. Influence of temperature on dynamic parameters of frozen soils seems to be the only task in frozen soil dynamics for a long time; while influence of frozen layer in dynamic response of a site has attracted attentions in recent years. At last, physico-mechanical processes involved in deformation of constructions in permafrost regions are briefly analyzed.

Key words: frozen soil, mechanical properties, freeze-thaw, state-of-art

CLC Number: 

  • TU 443
[1] GAO Feng, CAO Shan-peng, XIONG Xin, ZHOU Ke-ping, ZHU Long-yin, . Brittleness evolution characteristics of cyan sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 445-452.
[2] ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong, SHEN Fa-yi. Experimental and model research on shear creep of granite under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 509-519.
[3] ZHANG Shan-kai, LENG Xian-lun, SHENG Qian, . Study of water swelling and softening characteristics of expansive rock [J]. Rock and Soil Mechanics, 2020, 41(2): 561-570.
[4] LIU Bo, MA Yong-jun, SHENG Hai-long, CHANG Ya-ru, YU Jun-jie, JIA Shuai-long, . Experiments on mechanical properties of Cretaceous red sandstone after freeze-thaw process [J]. Rock and Soil Mechanics, 2019, 40(S1): 161-171.
[5] CHOU Ya-ling, HUANG Shou-yang, SUN Li-yuan, WANG Li-jie, YUE Guo-dong, CAO Wei, SHENG Yu, . Mechanical model of chlorine salinized soil-steel block interface based on freezing and thawing [J]. Rock and Soil Mechanics, 2019, 40(S1): 41-52.
[6] LEI Jiang, CHEN Wei-zhong, LI Fan-fan, YU Hong-dan, MA Yong-shang, XIE Hua-dong, WANG Fu-gang, . Mechanical properties of surrounding rock in diversion tunnel of water diversion project from Hongyan River to Shitou River [J]. Rock and Soil Mechanics, 2019, 40(9): 3435-3446.
[7] WANG Chong, HU Da-wei, REN Jin-ming, ZHOU Hui, LU Jing-jing, LIU Chuan-xin, . Influence of erosive environment on permeability and mechanical properties of underground structures [J]. Rock and Soil Mechanics, 2019, 40(9): 3457-3464.
[8] LI Jie-lin, ZHU Long-yin, ZHOU Ke-ping, LIU Han-wen, CAO Shan-peng, . Damage characteristics of sandstone pore structure under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(9): 3524-3532.
[9] HAN Gang, ZHOU Hui, CHEN Jian-lin, ZHANG Chuan-qing, GAO Yang, SONG Gui-hong, HONG Wang-bing, . Engineering geological properties of interlayer staggered zones at Baihetan hydropower station [J]. Rock and Soil Mechanics, 2019, 40(9): 3559-3568.
[10] YAN Jian, HE Chuan, YAN Qi-xiang, XU Jin-hua, . In-situ test and calculational analysis on frost heaving force of moraine stratum in Que’er moutain tunnel [J]. Rock and Soil Mechanics, 2019, 40(9): 3593-3602.
[11] WANG Zhen, ZHU Zhen-de, CHEN Hui-guan, ZHU Shu, . A thermo-hydro-mechanical coupled constitutive model for rocks under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(7): 2608-2616.
[12] CHEN Min, ZHANG Tao, SHAN Hua-gang, WANG Xin-zhi, MENG Qing-shan, YU Ke-fu, . Study of the relationship between compression wave velocity and physical properties of calcareous sand [J]. Rock and Soil Mechanics, 2019, 40(6): 2275-2283.
[13] GAO Feng, XIONG Xin, ZHOU Ke-ping, LI Jie-lin, SHI Wen-chao, . Strength deterioration model of saturated sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(3): 926-932.
[14] HU Tian-fei, LIU Jian-kun, WANG Tian-liang, YUE Zu-run, . Effect of freeze-thaw cycles on deformation characteristics of a silty clay and its constitutive model with double yield surfaces [J]. Rock and Soil Mechanics, 2019, 40(3): 987-997.
[15] CONG Yi, CONG Yu, ZHANG Li-ming, JIA Le-xin, WANG Zai-quan, . 3D particle flow simulation of loading-unloading failure process of marble [J]. Rock and Soil Mechanics, 2019, 40(3): 1179-1186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[3] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[4] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[5] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[6] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[7] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[8] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[9] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[10] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .